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SUMMARY

The occurrence probability of solar high energy proton radiation has

been evaluated statistically as a function of radiation flux, solar activity

level, and solar distance. The results are applicable to determining the

solar proton radiation environment of spaGecraft in interplanetary space

between l and Z astronom_ica! units (AU) in the !969 to 1975 time period.

Previous tabulations of solar proton event characteristics have suffered

from incompleteness and inconsistencies. A literature survey permitted a

new tabulation of solar flare times and positions, proton radiation event

onset, rise and decay times, and proton fluxes above 10, 30, and 100 Mev

at 1 AU. At least partial data of 76 proton radiation events were established

from direct observations described in the literature. From these data, an

analytical representation expressing the temporal variation of the proton flux

as a function of proton energy and total flux per radiation event was derived.

This representation was used to estimate flux data not available from experi-

mental results. The annual fluxes and the frequency distribution of radiation

events versus flux per event were then calculated.

To estimate the probability distribution of expected solar proton radi-

ation levels from 1969 to 1975, the sunspot number in these years was

predicted by extrapolating the Fourier transformation of the sunspot numbers

from 1749 to 1964. The correlation coefficient of the annual proton flux

versus energy with the sunspot numbers from 1956 to 1963 was calculated.

It was then possible to calculate the most probable proton fluxes versus

energy for each year from 1969 to 1975, as well as the confidence levels of

these flux values. The occurrence frequency distribution of solar proton

radiation events was also correlated with the sunspot number, and the results

were used to predict the most probable number of proton events of various

sizes for each year from 1969 to 1975.

The long-term average flux predictions were supplemented by estab-

lishing correlationsbetween the occurrence probabilities of individual solar

flares and observable predicable solar activity parameters. These para-

meters were (1) the area, duration, and luminosity of calcium plage regions;

(Z) the existence of stationary points of zero magnetic field in dipolar magnetic

regions; and (3) decreases of the sea-level neutron flux that precede some

solar flare proton radiation events.

Theoretical analyses were used to evaluate the temporal variation of

the solar proton flux versus energy as a function of solar distance. These

analyses assumed (1) acceleration of protons by hydromagnetic shock waves

-- V --
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induced in the solar corona by absorption of light emitted by a flare; (Z)

motion of protons in the quiescent interplanetary magnetic field; and (3) ran-

dom walk of energetic protons captured in the disordered magnetic fields

associated with local concentrations of plasma in interplanetary space.

Three aspects of the solar proton radiation environment permit eval-

uation of the probability distribution of the environment level experienced on

a trajectory between 1 and 2 AU during the 1969 to 1975 time period. These

aspects are the radiation event occurrence frequency distribution as a

function of flux per event and stage of the sunspot number cycle, the analyti-

cal representation of the flux versus time and energy in an individual event

at 1 AU, and the dependence of the environment on solar distance. Appli-

cation of these aspects to mission environment analysis is illustrated for the

example of an earth-Mars trajectory in 1971.

Recommendations for additional study include analysis of angular

distributions of the radiation flux versus time and energy, evaluation of the

environments of energetic solar electrons, alpha particles and heavy nuclei,

and extension of the solar distance range to O. 3 and 5 AU.
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I. INTRODUCTION

PREVIOUS RA DIATION ENVIRONMENT MODE LS

The design and operational philosophy of space vehicles and their

components must be based on knowledge or assumptions concerning the

environments that they are expected to encounter. The environment of

charged particles, especially protons, at high kinetic energies is one to

which many subsystems are sensitive. The significant proton radiation

beyond the geomagnetic field is that originating at the sun; only protons

associated with solar activity are discussed in this report. It is generally

impossible to define this environment exactly, and models must be developed

which express the probability of encountering various proton radiation

levels.

Early attempts to provide models of the proton radiation environment

were directed at establishing an upper envelope of the proton flux versus

energy associated with a single solar flare (Reference i). Later, the time-

dependent flux versus energy distributions of several flare-associated

increases of the proton radiation level were used to construct models of the

proton flux as a function of energy and time after the flare (Reference Z).

These models were also nearly envelopes of actual solar proton radiation

events and did not represent the frequency of occurrence of events of various

sizes. The desirability of establishing total flux encounter probabilities led

to models (Reference 3) that expressed these probabilities as functions of

proton energy and mission duration. The dependence of the expected environ-

ment on the stage of general solar activity and on solar distance are of great

importance in planning and implementing future planetary exploration

missions, and have not previously received quantitative consideration.

PROGRAM OBJECTIVE

The objective of this program is to evaluate the environment of high-

energy proton radiation associated with solar flares in interplanetary

space at distances from 1 to 2 astronomical units {AU) from the sun in

1969 to 1975. The results will be applicable to spacecraft environmental

analysis and design.

- 1 -
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TASK DESCRIPTION

In order to accomplish the general program objective, this effort was

organized into six tasks with the following objectives:

• Perform a literature survey of solar flare events for which

protons have been observed, and prepare a table of characteristics

of these events.

Z. E_tablish statistical correlations between solar flare proton

events and predictable solar phenomena.

o Determine the occurrence probability of solar flare proton

radiation characteristic s.

4. Evaluate the spatial dependence of solar flare high-energy

proton radiation characteristics.

o Establish a method of evaluating the solar flare proton environ-

ment in space, and illustrate the method by application to a space-

craft trajectory in interplanetary space.

e Prepare and submit reports as required, and provide for

reviews of progress.

-Z -
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II. PROTON _RADIATION EVENT TABULATION

LITERATURE SURVEY

While galactic (cos.mic) radiation has been studied since 1913, the

earliest measurements that suggested that the sun was a source of energetic

particle radiation were made in 1942. The issue remained in doubt until

1956, when the unusual solar proton event of February 23 convinced even the

skeptics. Since that date, approximately 100 events in which high-energy

(Mev) protons were emitted from the sun have been recorded.

In order to prepare a table of the dates and characteristics of these

events, a literature search was undertaken. In the initial stage, this search

was based upon previous tabulations of solar proton events (References 4, 5,

6, and 7). These references not only led to a number of additional refer-

ences relevant to solar proton events, but they also provided the bulk of the

information for the list of the characteristics of the observed proton events.

The second stage of the literature search involved examining the

indexes of standard technical journals in the field. The journals examined

were:

(United States and Canada)

Journal of Geophysical Research (formerly Journal

of Terrestrial Magnetism)

The Physical Review

Physical Review Letters

Canadian Journal of Physics

The Astronomical Journal

The Astrophysical Journal

Journal of Atmospheric and Terrestrial Physics

Science

Journal of the Royal Astronomical Society of Canada

-3-
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(Western Europe)

Planetary and Space Sciences

Nature

I1 Nuovo Cimento

Comptes Rendus

Space Science Reviews

A stronautica Acta

Space Research (COSPAR)

Monthly Notices of the Royal Astronomical Society

(Eastern Europe-English translations only)

Soviet Physics-JETP

Proceedings of the USSR Academy of Sciences

Geomagnetism and Aeronomy

Soviet Physics - Doklady

(Abstract Journals)

Physics Abstracts

Scientific and Technical Aerospace Reports (STAR}

International Aerospace Abstracts

As expected, the Journal of Geophysical Research yielded the most relevant

information, followed by The Physical Review. For the early events (prior

to 1956}, The Physical Review was almost the sole source of information.

The abstract journals were invaluable for locating articles written in lan-

guages other than English and reports not published in one of the standard

journals.

Each journal was searched, starting with the most recent (generally

December 1965 or January 1966) issue and going backward until it was

apparent that further search had a very low probability of yielding anything.

4-
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For many of the journals, this cutoff point was January 1956, since those that

failed to report the event of 23 February 1956 would not be expected to contain

articles on earlier solar proton events. The Astrophysical Journal, The

Astronomical Journal, and The Physical Review were searched back to 1950.

The 19 November 1949 event was responsible for the first articles, although

subsequent articles reported events that had been observed as early as 1942.

The references were divided into two groups -- those concerned primar-

ily with one event were categorized by month and year of that event (See

Appendix A); those that referred to several events were categorized by the

characteristic emphasized. Categories selected were:

Prediction of solar flares

Origin of solar flares

Source of solar flare particles and solar radio bursts

Propagation of solar flare particles

Spatial distributions of solar flare particles

Cosmic ray effects

Energy spectra of solar flare particles

Polar cap absorptions

Geomagnetic disturbances related to solar flares

Ionization and reactions in the earth's atmosphere

Miscellaneous

These lists of references appear in Appendix A. To prevent duplications

and to facilitate study of the material, each list of references is presented in

chronological order according to publication date.

DATA TABULATION

The first sources of information used in the table of solar flare and

proton radiation event data (Table l) were previously prepared tables of a

similar nature (References 3, 4, 6, 8, and 9). The initial list prepared from

-5-
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these sources included some or all of the following data for each event and

the flare most probably associated with each event:

Flare Data

Date of occurrence

Universal time of maximum

Heliographic latitude and longitude

Calcium piage region number, assigned by the iv_civiath-Huibert

Observatory

Importance (I - to 3 +1

Proton Radiation Event Data*

Onset plus rise time (t) in hours (from optical flash maximum to peak

proton flux) '

Characteristic decay time (T) in hours (time in which proton flux

decreases from peak to 1/e of peak)

A 2
Peak flux rate (_) in p/cm sec above energy E o (Mev)

Integral flux (f_) in p/cm 2 above energy E o (Mev)

The solar proton data are generally given for particles above energies

of 10, 30 and 100 Mev. However, frequently a complete set of the data for a

given event (especially the early events) was not available. In particular,

values of t (the onset plus rise time) and 1"(the characteristic decay time) for

protons above I0 Mev were not available for any of the events.

A secondary source of proton event information was Reference I0, which

lists the integral fluxes for protons above 30 Mev for 52 events from

23 February 1956 to I0 November 1961. Of these events, fluxes for the fol-

lowing dates were not reported in the other compilations examined:

13 November 1956, 3 April 1957, 21 June 1957, 25 March 1958, Z September

1959, 29 March 1960, 15 July 1961, 28 July 1961, 8 September 1961,

10 September 1961 and 10 November 1961.

Another very useful source of information for the early events was

Reference 11, which, in addition to listing and providing information on nine

events from 1947 to 1952, referenced earlier work pertaining to solar proton

*As observed at earth (1 AU)

- 17-
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events. Based on these articles, the following events were selected because

the measurements (either by balloon-borne detectors or ground-based neutron

monitors) indicated the presence of solar protons: 28 February 1942,

7 March 1942, 25 July 1946, 11 May 1949, 19 November 1949, 27 January 1951,

16 May 1951 and 17 January 1952. A problem arose in that the information

desired for the table was not available directly. However, by comparing

neutron monitor data (principally from Deep River, Canada) and ionization

detector measurements (principally at Cheltenham, Maryland; Climax,

Colorado; and Godhavn, Greenland) for these events with those for later

events, estimates of the integral proton fluxes above 100 Mev were made.

The late 1962 and 1963 events presented a different kind of problem.

The time required for data to be analyzed and reported in the literature

appears to run from one to two years. Therefore, the only article of signifi-

cance located for these events was that written by Geodeke and Masley

(Reference 12). They report riometer attenuations at 30 Mcs for the follow-"

ing events: 23 February 1962, 23 October 1962, 9 February 1963 and

15 April 1963. The peak flux rate above i0 Mev was related to the maximum

riometer attenuation by

¢%>10 Mev (p/cm2-sec) = 30 a 2 .(1)

where a is the attenuation in db. This relationship, obtained by fitting the

data from Webber's table (Reference 4), is a reasonable average, although

a factor of 3 variation is observed. By using this relationship, the peak flux

rates above 10 Mev for these four events were estimated.

After these data were gathered, two problems presented themselves.

One problem was to estimate the incomplete data for several of the e_rents;

the other problem was to reconcile differences in the data for those events

which were reported by more than one source. The estimation of the miss-

ing data was carried out by use of the model event described in Section IV.

Basically, this involved obtaining mathematical relationships that are

reasonable approximations for those events for which all or most of the data

are available and using these relationships to estimate the missing data from

the available data. In this way, the entire event could be approximately
reconstructed once a single flux, flux rate, rise, or decay time was known

(provided the energy range represented was known). All of the missing data

were estimated in this way. The estimated numbers are followed by an

asterisk (-'.'-') in Table 1. The reconcilation of conflicts was sometimes carried

out by use of the model event also. If a decision could not be made on the

basis of reliability of measurement, reputation of author, or date of publica-

tion (later publications were favored), the data that best fit the other data (on

the basis of the model)were used. The numbers finally selected are listed

in Table 1.

-18-
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In order to illustrate the techniques that were used to arrive at the

numbers in Table l, the event of 12 November 1960 will be considered.

This event has been reported by many authors and discussed in some detail

by Webber (Reference 13), Fitchel, Cuss, and Ogilvie (Reference 14), Lewis

et al (Reference 6), and several others. Unfortunately, the available

measurements have not been collected by holding a symposium on the event,

as was done for the July 1959 events (Reference 15).

One problem is to distinguish between primary references (in which

authors report the..... results of _r-ct measurements) a.._,"'-I secondary -_=-_=rces^C---

(in which authors report event characteristics based upon information i

obtained from the literature, private communication with other workers in

the field, etc.). For example, various authors have used Webber's tabula-

tions in their own publications. While secondary references are quite

valuable in a study of this sort, it is important to prevent an artificial

weighting of the results by citing a number of secondary references based

upon one or a few primary references.

A brief summary of the reported characteristics of the event of

12 November 1960 is given in Table 2. These are either primary references

or authoritative secondary references based upon a study of the available

primary references. An integral flux of 1.2 x 109p/cm 2>30 Mev appears to

be a common meeting ground, with the values of _2 x 108 being in units of

p/cm2-ster. Similarly, an integral fluxof_3.5 x 108 p/cm 2 >100 Mev

agrees with the published numbers. In a similar manner, peak flux rates

of 12,000 p/cm2-sec (>30 Mev) and 2,500 p/cm2-sec (>100 Mev) were

arrived at. Rise times of 10 to 16 hr (>30 Mev) and 8 to 10 hr (>30 Mev) and

characteristic decay time of 18 to 24 hr (>30 Mev) and 14 to 18 hr (>100 Mev)

were selected in a similar way.

In addition to the numbers reported in Table 1, several other references

reporting characteristics of the 12 November 1960 event were found. Spectral

shape information has been reported by de Feiter, Freon, and Le Grand

(Reference 25), Kodama and Kitamura (Reference 26), Pomerantz, Duggal,

and Nagashima (Reference 27), Conforto and Iucci (Reference 28), Lockwood

and Shea (Reference 29), Roederer et al (Reference 30), and Ogilvie and

Bryant (Reference 31). These references show that there seems to be a

common meeting ground in the vicinity of an R-6 spectrum, although several

authors point out that the spectral shape appeared to be too complex to be fit

by a simple power law, either in rigidity or energy. The double peak in the

neutron monitor data, reaching 2.1 times the normal sea-level counting rate,

probably was related to this fact. The second peak has been interpreted as

due to the influence of disturbed magnetic fields which "channeled" the solar

plasma cloud to earth.
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A good summary of measurements made on this event is presented by

Masley and Goedeke (Reference 32}. However, it is our opinion that the 4_

isotropy assumed throughout their analysis for the rocket and balloon altitude

flux measurements is incorrect, especially since it results in a proton flux

approximately six times that reported by other authors. This problem

illustrates the difficulty of obtaining integrated flux numbers for the various

events, since theymust be inferred from indirect measurements (neutron

monitors, riometers, etc.) and from a few flux rate measurements.

Since the numbers reported by Webber (Reference 4) agree with those

selected for integral fluxes, peak flux rates, rise and characteristic decay

times >30 and >100 Mev, his values were used for the integral flux and peak

flux rate >10 Mev as well. However, had reported, values for these param-

eters been unavailable, the technique for estimating them is straightforward.

Based upon the available numbers, a value of A would have been chosen

(Figures19-22).f For the event of 12 November 1960, A is _i.0 x 108 ,

which leads to J_>10 Mev = 9 x 109 p/cm 2, and _>10 Mev = 36,000 p/cm 2-
sec. These are the values that would have been used had not reliable

published numbers (f_>10 Mev = 4x 109 p/cm 2 and $ >10 Mev = 32,000

p/cm2-sec) been av_iiable. This not only illustrates how mission data were

estimated but given an idea of the accuracy of the estimation technique used.

A number of very small events reported by Krimigis, Van Allen, and

Frank (Reference 33), Van Allen (Reference 34), and Cline et al (Reference

35) have not been included in the table because of their size. Undoubtedly,

there have been hundreds of such small events which have not be detected.

However, it is the large events (>107 p/cm2 >30 Mev) that control the annual

proton fluxes and are of major interest from biological and material damage

standpoints.

-21 -
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iT/. CORRELATIONS WITH SOLAR PARAMETERS

SELECTION OF CORRELATIONS

On the basis of the solar proton radiation event data presented in the

preceding section, the future occurrence of events must be expected to be

essentially randorn unless a means of predicting events can be established.

It is clearly impossible to predict individual events farther into the future

than the life-time of a typical active solar region, i. e. , a few months.

Since it is desired to evaluate the solar proton radiation environment in the

1969 to 1975 time period, an index of solar activity must be found which can

be predicted several years in advance and which is strongly correlated with

the mean flux of energetic protons associated with flares and with the

frequency of solar proton radiation events.

Because of the generally cyclic but not fully periodic nature of solar

activity, a reliable prediction of the future level of any activity index must

be based on knowledge of past activity over many cycles. The sunspot

number* is the only adequate activity index, having been observed continuously

and uniformly since 1749, while other indices have been recorded only since

1913 or later. Sunspot data, therefore, exist for 19 complete cycles of mean

duration Ii.2 years, whereas no other activity data are consistently avail-

able for more than four cycles. As will be shown later, trends exist in the

sunspot cycle which represent systematic changes over periods as long as

89 years; therefore, activity indices that have been recorded only for shorter

periods are less capable of providing activity forecasts for future years.

The long-range prediction of mean levels of solar activity and flare-

associated proton flux can be supplemented by methods applicable to the

forecasting of individual proton radiation events from one to 35 days in

advance. These methods are based on statistically significant relationships

between observable characteristics of individual active regions and the future

occurrence of solar flares at these regions. The utility of short-range

forecasts of flares and, hence, of the likelihood of increases in the proton

radiation environment level, for interplanetary missions lies in the ability to

program and command evasive maneuvers (such as presentation of thick

spacecraft sections toward the direction of approach of the most energetic

protons) and the alteration of equipment operating modes (such as the telem-

etry cycle of a charged particle spectrometer). It is obvious that, in a flight

*The term "sunspot number" in this report refers to the monthly smoothed Wolf number (Ziirich).

- 23 -
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of several hundred days duration, at least one solar proton event will almost

certainly occur. Short-range solar activity forecasts, therefore, are

relevant to detailed spacecraft operations rather than to mission scheduling.

The characteristics of active solar regions selected as bases of flares

prediction are the area, brightness, and luminosity of calcium plage regions

and the presence of bipolar or complex magnetic regions in which the line

separating areas of opposite polarity has no proper motion with respect to

the solar photosphere (Reference 36).

Brightening in the chromospheric Ca II K 3 line is one of the earliest

and most stable optical indications of the formation of an active region;

therefore, plages promise a good opportunity for advance warning of flares.

More transitory optical indices, such as the area of sunspot groups, do not

afford sufficient stability for the reliable forecasting of activity more than a

few (about three) days in advance (Reference 37).

Magnetic activity in a photospheric region often precedes optically

observable activity and, as will be shown, allows the forecasting of flare

occurrence probability with greater accuracy than is possible by means of

plage observations alone.

An additional correlation, between solar proton events and previous

slight decreases in the neutron flux near sea level, was investigated.

PROTON FLUX - SUNSPOT NUMBER

In order to evaluate the probability distribution of the mean flare-

associated proton flux versus proton energy in 1969 to 1975, the correlation

between this flux and the sunspot number must be established, and the

probable sunspot number during these years must be estimated.

Sunspot Number Prediction

Although certain partial regularities, such as the basic cycle of mean

duration 11.2 years, are evident in the temporal dependence of the sunspot

number, the detailed behavior of this number is sufficiently complicated to

require representation by a broad spectrum of component frequencies. If

only the most important component frequencies such as those at 0. 0112,

0.089, and 0. 100year -1 are used, the fluctuations in the sunspot number are

still inadequately represented. Although there are presumably physical

reasons underlying the sunspot cycle and its correlation with solar flare pro-

ton radiation occurrences, these reasons are too poorly understood to permit

a theoretical and analytical approach to the problem of forecasting solar pro-

ton flux occurrence probabilities. It is necessary, therefore, to adopt a

- Z4 -
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statistical approach which takes into account what may be truly random

variations in the sunspot number and the solar flare proton flux level.

Let RM(t) be the monthly smoothed Wolf sunspot number at time t,

where t = 0 on 1 July 1749 (Reference 38). The integral

I
t I t

f RM(t ) e-i 2vft dt =J RM(t)(cos2vft - i sin Zvft)dt (2)

O O

has the amplitude which, when averaged over an infinite time interval, is

equivalent to the sum of the Fourier sine and cosine integrals of RM(t)

(Reference 39),

t /

P(f) = lira RM(t) e
/

t--_ co O

RM(t) sin P-wft dt l

RM(t ) cos Z_rft dt]

(3)

because of the orthogonality of the sine and cosine functions. The "power"

P, i.e., the amplitude squared at frequency f, is defined as the frequency

power spectrum of the sunspot number RM(t ). Since R M is known only during

an interval of 216 years (actually a Zl5-year interval, 1749-1964, was used

in this program), the limit in Equation 3 was approximated by an upper bound

of t / = Z15 years; therefore, the lower bound on f is 4.65 x 10 -3 year -1. An
-1

upper bound, fo = 0. 2 year , was chosen because of the essential randoni-

ness of rapid fluctuations in R M. The resulting spectrum of P(f) versus f is

shown in Figure 1 (Reference 40), and the values and amplitudes of the 25
largest frequency components are presented in Table C2. Inspection of

Figure 1 shows that any other components of the frequency power spectrum

are negligible. Since RM(t") is uniformly continuous piecewise on the

interval (1749.5e t" e1976.0), the only uncertainty in the use of Equation 4

is the one arising from the use of a finite number of components of the power

frequency spectrum (Reference 39).

-25 -
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The sunspot number at time t" is the average of the frequency ampli-

tude spectrum over the range of frequencies,

f f 1o I/t'm P(f) sin 2wf (t" - to)df

RM(t") = __ / o
llZ

(4)

where tim = 215 years and t o is a time at which RM(to) = 0. This value

occurred only from February through December 1810, and so t o = 61.5 ±
0.5 year {after 1 July 1749). Then RM (t") = 0 at t" = 1810. 5±0. 5, in
accord with observation.

RM(t" ) _vas calculated at each month from July 1749 through December

1969 by means of the computer program SPOTNO described and listed in

Appendix C. The results were normalized so that the arithmetic mean

deviation of predicted and observed maxima between 1749 and 1964 was zero.

The time scale was translated so that the arithmetic mean deviation of pre-

dicted and observed dates of maxima between 1749 and 1964 was zero; this

procedure is equivalent to the choice to = 65.2 year. In the normalization

procedure, the un-normalized predicted maxima of RM(t") have a mean value

RIV1' = 49.2, and the observed maxima of cycles i to 19 have a mean value
R M = 108.1. The calculated values of RM{t" ) are then multiplied by the

factor (_-_/_--M-T)= 2.20. In the translation procedure, the unadjusted pre-

dicted maxima occur at times t'i, i = 1 to 19, and the observed maxima occur

at times ti. The translation adds to each t'i the amount 6t = 0.47 year, so
that

19

{t.' + 8t- t.) = 01 1

i=l

The dates and values of observed and predicted maxima of R M are

presented in Table 3. Observed and predicted values of RM are shown in

Figure 2 for recent cycles {15 through 19), and predicted monthly values

during cycle 20 {January 1969 through December 1975) are also given.

The distribution of deviations of observed and predicted maximum values of

R M is plotted in Figure 3 as a function of the standard deviation _R = 54.5.

This distribution is fitted by a Gaussian distribution within statistical errors

resulting from the population {19) of the sample of deviation values. The

deviation of predicted from observed values of R M is, therefore, random

and not systematic. Comparison of predicted and observed sunspot numbers

in the early part of cycle 20 {1964to date} {Figure 2}, shows reasonable

agreement.
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An analysis (Reference 41 ) of the frequency distribution versus ampli-

tude of sunspot number maxima led to the prediction of a maximum number

of 135 in 1968, with probability 0.75 that this maximum will lie in the range

ll0<RM<160.

Using a correlation of R M maxima with rise times from minimum to

maximum, King-Hele (Reference 42) has predicted a maximum of R M = 140
in February 1968; he does not give the standard deviations of these values.

As an alternate approach to developm ent of a formal representation of the

behavior of the sunspot number, an attempt was made to fit RM(t ) by a

polynomial

n

RM(t) =n_=0 an (t-to)n
(5)

by a least-squares technique. Since there are 19 observed maxima, a

polynomial of degree 19 or greater is required. The behavior of such a

polynomial is so sensitive to the terms of higher degree at large values of

(t-to) that the terms of low degree can not feasibly be evaluated with

sufficient precision for accurate determination of RM(t ) near t = t o.

Proton Flux - Sunspot Number Correlation

The results presented in Section II provide values of the annual proton

flux _ #y (>E) at proton energies greater than E, at solar distance 1 AU.

Figure 4 shows the annual flux above 10, 30, and 100 Mev and the annual

smoothed Wolf sunspot number Ry for 1955 through 1964. Use of annual

proton flux values reduces fluctuations associated with single large or

anomalous solar proton events such as that of 23 February 1956, without

destroying the general correlation of the flux with the sunspot number.

The correlation coefficient of the annual smoothed Wolf sunspot number

with the common logarithm of the annual proton flux is

I

i=l

c = (s)

- 28 -

I
I

I
I
I
I
I
I

I
I

I

I
I
I
I

I
I
I
I



I NORTH AMERICAN AVIATION, INC. SPACE and INFORMATION SYSTEMS DIVISION

I
I

I
I

I
I

I
I
I
I
I
I

I
I

I
I
I

Table 3. Monthly Smoothed Wolf Sunspot Numbers at Maxima

Cycle

1

2

3

4

5

6

7

8

9

I0

Ii

IZ

13

14

15

16

17

18

19

20

Observed

Year

1761.5

1769.7

1778.4

1788.1

Number

86.5

115.8

158.5

141.2

Year

1759.4

1770.4

1781.4

1791.7

Predicted

1805.2

1816.4

1829.9

49.2

48.7

71.7

1802.2

1812. 1

1827.3

1837.2

1848.1

1860.1

1870.6

146.9

131.6

97.9

140.5

1837.8

1847.9

1859.1

1869.0

1883.9

1894.1

1907.0

74.6

87.9

64.2

1884.3

1894.7

1905.7

1917.6

1928.4

1937.4

1947.5

1957.0

105.4

78.1

119.2

151.8

190.2

1916.2

1927.4

1937.5

1947.4

1955.8

1969.8 ± 0.7

Number

70.1

90.6

71. Z

16.5

74.4

110.6

140.0

165.3

140.0

110.6

74.4

16.5

71.2

71.6

99.5

91.0

115.0

105.4

103.4

135.2 • 54.5
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where I is the number of years sampled (10) and _ y : log 10 _#Y was

calculated for threshold energies of I0, 30, and I00 Mev. The results,

presented in Table 4, are only slightly affected by omission of the

Z3 February 1956 event, the most unusual of the larger events in regard to its

hard spectral distribution.

Table 4. Correlation of Proton Flux with Sunspot Number

Minimum Proton Energy Correlation Coefficient

10 Mev

30 Mev

100 Mev

0.67

0.60

0.53

I
I

!
I
I
I
I

The ellipses in Figure 4 indicate the 95-percent confidence level that

the flux in a given year from 1969 to 1975 will lie in the vertical range
bounded by each ellipse at the abscissa corresponding to that year_ The

most probable flux values lie on the major axis at these abscissae. These

ellipses have equations of the form (Reference 43), adjusted for a sloping
major axis,

R 2

Y

Z

_R

2

+ - (0.95) 2 (7)

where _R is the sum of the variances of the sampled annual sunspot number

Ry (1956 - 1963) and of the predicted monthly numbers (Equation 4); a_ is

the variance of the annual proton flux. The mean values of Ry and /d/v have
' 2 J-_

not been subtracted from the Ry and [_Sy in computing _2 and _.. The

application of these results to the pr6blem of evaluating the expe%ted proton

flux in the 1969-1975 time period is discussed further below and in Section IV.

Since the major axis of each ellipse is the locus of the most probable

values of the annual flux above the corresponding energy_, and the probability

distribution of lOgl0 f_y = ]_ is assumed symmetrical about the most

probable value, the pJrobability is 0.5 that/_6_ lies above the major axis.
If a factor p2 <1 is used in place of (0.95) 2 on the right-hand side of

Equation 7, the resulting ellipse represents the confidence level p of .y..
As p2 is varied in the range 0 <p2< 1, a set of confocal ellipses with comcx-

dent major axes is generated.

/ ' i,
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PROTON EVENT NUMBER - SUNSPOT NUMBER

There were 76 events reported in the literature in sufficient detail to

warrant their inclusion in Table 1. It was necessary to correlate these data

with the monthly smoothed Wolf sunspot numbers if the predicted sunspot

numbers for the next solar cycle (cycle 20) are to be used as a basis for

predicting future proton events.

In order to seek a correlation between the proton event data and the

sunspot number, it seemed logical to arrange the proton event data in a

pattern which provided only a small amount of bias with event size. This

may be accomplished by constructing Table 5 from the data in Table 1. One

count is entered in each column to the left of the column corresponding to

a flux greater than the flux in a given event. The integral fluxes above 30 Mev

were used since these data were the most numerous and probably the most

reliable as well. It will be noted that the intervals are open-ended, i. e. , an

event with y_ 7109 p/cm 2 above 30 Mev would be recorded as a 1 in each

column. Hence, even though only two events were recorded for 1942, each

had y_>108 p/cm 2' and so were recorded in the first three columns of
Table 5.

Based upon Table 5, a proton event number (PEN), analogous to the

annual smoothed sunspot number Ry, may be defined as

N

PEN =_

i

n. (8)
1

where ni is the number of columns in Table 5 in which the event would be

listed, and N is the number of actual observed events in the year. Values

of N are also given in Table 5. For the purposes of this analysis9 it is

assumed that Ry and the PEN are related thus

(PEN)y = 0.1 Ry_l ± 4.0 (9)

Since the estimated Ry for 1969 is 135 ± 54, the estimated PEN for 1970 is
14±5. The proton event numbers PEN for the years Y = 1940 to 1964 and the

sunspot numbers Ry are plotted versus time in Figure 5. It is to be noticed
that for cycle 19 (the only one for which shape comparisons are possible}

there is a time lag of about one year, as indicated in Equation 9, between the
sunspot number {which reached a maximum in 1957-1958} and the proton event

number (which reached a maximum in 1959}. Callender, Manzano, and

Winckler (Reference 44} measured an 18-month time lag in cosmic ray ioniza-

tion. Until more definitive data become availablej it is not possible to assume

that such a time lag does not exist.
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Table 5. Proton Event Frequency Versus Flux Above 30 Mev

I I Numberof Events with !
INo_::_ ' I f* >.30 Mev Above Given Values (_/cm 2 ) [ =

_,_-i _- iol o iol o iolo

The time lag of approximately one year was obtained by comparing the

standard deviations for the PEN from 0.1 Ry for the following three cases.

Time Lag Standard Deviation

0 4.2

1 year 4.0

2 years 7.4

- B5 -
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Knowing the proton event number is not sufficient to calculate the total

proton flux expected in any future year. A total of 14 events with f¢ = 107

p/cm 2 >30 Mev would yield a PEN of 14 and a total flux of 1.4 x 108J_ p/cm 2
>30 Mev. However, the same PEN would result if there were two events of

109 p/cm 2>30 Mev and one event of 5 x 108 p/cm2>30 Mev, but the total

proton flux would be almost 20 times greater. This, together v_ith the use
of the PEN concept, is illustrated in Section V.

FLARE-ACTIVE SOLAR REGION

While the correlation between proton flux and the sunspot number is

most valuable to interplanetary spacecraft radiation protection analysis, the

ability to predict the probability of occurrence of solar flares during specific
periods is also useful. Justification of the selection of characteristics of

plage regions and magnetically active regions as indicators of future flare

occurrence lies in the expectation that a strong correlation Of flares with

these indices will exist in future years. In order to evaluate the flare-plage

correlation, let the plage areas, ages (numbers of disk passages), and

luminosities as observed at central meridian passage (CMP) be assigned to

intervals with indices i, j, k, respectively, defined in Table 6.

It must be emphasized that the correlations discussed here permit only
the prediction of solar flare occurrence probabilities and not the occurrence

or size of proton radiation events. A high probability of flare occurrence,

however, is associated with a high probability of occurrence of enhanced

levels of energetic proton radiation.

i

i

1

2

3

4

Table 6. Intervals of Parameters of Plage Regions

Area I

<I000

1000-2000

2000-4000

_4000

1

2

3

4

5

6

7

8

Age 2

1

Z

3

4

5

6

7

_8

k

1

2

3

4

Luminosity 3

1.0, 1.5

2.0, 2.5

3.0, 3.5

4.0-5.0

1 Millionths of solar hemisphere.
2 Solar rotations.
3

Units on McMath-Hulbert scale.

-37 -
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Let Pijk be the number of plages in one year which had area in the ith
interval, age in the jth interval, and luminosity in the kth interval. For

example, P243 is the number of plages with area from 1000 to 1999 millionths

of the hemisphere which were appearing on the visible hemisphere for the

fourth time and had luminosity or intensity 3 or 3.5 on the McMath-Hulbert

scale. Let Pijk be the number of plages with similar character-observatory

istics, at each of which one or more flares occurred during the disk passage

following the passag_e on which the given characteristics were observed. The

flare-plage associations are those contained in Reference 45. In computing

P_jk, only flares with corrected area 100 millionths of the solar hemisphere

or greater are considered. Smaller flares have poorer correlation with plage

characteristics and are not predictable with significant accuracy by the pre-

sent method. If consideration were limited to flares larger than, for example,

200 millionths of the hemisphere, the smallness of the data sample would

reduce statistical accuracy. The term "flare" will be understood in this

section as one with corrected area at least 100 millionths of the hemisphere.

Let wij k be the probability that at least one flare will occur at any given
plage region, during the disk passage following the one on which the CMP

area, age, and luminosity of the plage were in intervals i, j, and k,

respectively. A good estimate ofwij k is given by {Reference 36)

W = P/
ijk ijk / Pijk (lO)

If the characteristics of a plage are observed at CMP, then wij k is known at
least 21 days before the occurrence of any flare considered in association

with this plage. If the region is formed west of the central meridian, this

time is 14 days. The values of wij k for each combination of plage character-
istics are listed in Appendix B for the years 1958 to 1904; these are assumed

applicable to the years 1969 to 1975, respectively, in the next solar activity

cycle.

Similarly, let P"ijk be the number of plages in area interval i, age
interval j, and lurninosi_y interval k at which one or more flares occurred

during the disk passage at which the plage was observed. Also let

= P"..,/P... (11)
w"ijk 1Js: 1J_

oVca1_::JJceW ""wlthin s evendays before" ": rBa f/j/_l_: = _heec_v_ ? _bait lel.t
"11k, tabulated In Append1 y of flare

If the

plage is observed, for example, at the solar equator at 60 degrees east

longitude, w"ij k approximates the probability of flare occurrence at this
plage during the remaining 11.5 days of its disk passage.

- 38 -
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Expected Accuracy of Predictions

I If a flare occurs at a given region, the prediction (expressed as a

probability) is considered to have a fractional correctness of wij k. If no

I flare occurs at this region, the prediction has a fractional correctness of

(1-Wijk). In a given time interval, y Pijk predictions are made, one for

each plage region, ij'-k

I J K
I The notation_ Pijkrepresents thetriple summation S S S PiJ k

i--1 i=i i=l

i over the i, j, and k intervals to which the plage area, age, and luminosity,

respectively, can be assigned. Reference to Table 6 shows that i = 4, j = 8,

k = 4 in the present analysis. The expectation that any prediction will prove

to be "correct" in the way correctness has been defined above is the weighted

average of the fractional correctness of all regions (Reference 36).

l

I
l

I
l

l
i

l

l

I P_jk Wijk

S = ijk

_, (Pijk- Pijk ) (1- Wijk)

+ ijk

ij_ PiJ k ij_,k Pijk

S = ijk

Z

I Pijk (1 - 2wij k + 2 wij k )

I Pijk

ijk

(IZ)

The expectation that a "false alarm" will result, i. e. , that no flare will

occur at the given region is

S F =

ijk ijk

I Pijk

ijk

(13)

1

i SF = _ (1 - S)
(14)

-39 -
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If a prediction is neither correct nor a "false alarm," it represents a failure

to predict a flare that does occur. The expectation of such a failure is

S O = 1 - S - S F = S F (15)

The expected accuracy of predictions of flare occurrence on the same

disk passage as that at which the plage characteristics were observed can be
• /

represented by S", SF" and So", which are found by replacing P ijk with

P"i'k and wi. k with w"ij k in Equations 12, 14 and 15, respectively. Values
of _ and S" _r_e presented in Table 7 for the years 1958 through 1964. These

values are assumed to hold for the corresponding years from 1969 through

1975, following an l 1-year solar activity cycle. If the variables were uncor-

related, S or S" would equal 0.5. The values of S apply only to flares at

plages obs\ervable on the disk passage preceding the flare.

Table 7. Flare Prediction Accuracy

Year Same Disk Passage (S") Next Disk Passage (S)

I

I

I
I
I

i
I
I

1958

1959

1960

1961

1962

1963

1964

0.716

0. 695

0.713

O. 733

0.717

O. 898

O. 899

0. 674

0. 673

0. 888

0. 744

0.717

0. 925

0. 960

I

!
I
I
l

Flare-Magnetic Field Correlation

Previous studies (References 36, 46) have established conditions on the

solar magnetic field component normal to the photosphere, B , which are
favorable to the occurrence of solar flares during the next diPk passage of

a magnetically active region. These simultaneous conditions are:

lo

2.

3.

IBpI_ Z gauss for 3 days or longer

laBp/_tl _ 1 gauss/day

IVBpI 9 I0 gauss/heliographic degree

- 40 -
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The gradient of Bp is understood to be the component normal to the line of
sight of V (_ • n_ where _ is a vector of unit length parallel to the line of

sight. This association is most useful in cases where magnetic activity is

evident before the formation of a calcium plage at a new region, and permits

forecasting of flare occurrence probability at dates 21 to 35 days in advance

at some regions at which the plage is "new" at the disk passage on which the

flares occur.

To evaluate this correlation, the positions of flares at new calcium

plages were translated to the dates at which magnetograms were obtained
_q ° .I , • ='f' • _ _L"

eT1ec_during the preceding solar rotation. 1no _rans_azzon included oz
differential solar rotation and the inclination of the solar equator to the

ecliptic plane. Table 8 presents the number and fraction of plages with age 1

rotation (i. e., new plages) in each year from 1960 through 1964; these plages

Table 8. Magnetic Field--Flare Association

Year

1960

1961

196Z

1963 -4

New Plages

Number

123

101

162

883

Fraction

0.291

0. 343

0.535

0.917

Stationa-ry

Magnetic
Null Points

Total Flaring

72

20

14

4

90

38

22

12

Other New Flaring

Regions

23

21

15

11

are the ones to which the magnetic field-flare correlation was applied. The

I
I

I

I

table gives the number of cases in which the magnetic field conditions listed

above occurred at the regions at which new plages were to appear on the

solar rotation following the magnetic observation. Next is given the number

of cases in which the existence of these magnetic conditions was followed by

one or more flares on the next rotation. Finally the table indicates the

number of new and flaring plage regions at which the magnetic conditions did

not occur. Magnetograms prepared before 1960 (Reference 47) lack sufficient

angular resolution for use in this analysis. The years 1963 and 1964, near

a minimum stage of solar activity, were combined to provide a more

significant statistical sample.

= 41 -
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Let N M be the number of stationary magnetic null points in one year,

i. e., the number of cases in which the previously described magnetic con-

ditions occurred. Let N h be the number of such points near which flares

were observed on the following solar rotation'. The combined accuracy

of flare occurrence predictions based on association with plages and with

magnetic field patterns is defined as

Accuracy of Combined Plage and Magnetic Correlations

!

!

!
s* = s (1 -_ Pilk)/ij_k Pijk

ik "" I
(16)

÷ NM _ Pilk/NM_ P
ijk

ik ijk

where S is defined in Equation 12. The sum SPilk is the number of new

ik

plages (j = 1) in the yearly data sample. Values of S* are given in Table 9;

the results in Tables 8 and 9 are assumed applicable to the years 1971

through 1975. In the absence of results for 1958 and 1959, it is assumed

that the results for 1960 apply to 1969 and 1970.

The results shown in Table 9 indicate that flare occurrence probabilities

can be predicted with reasonable confidence during years of high solar activ-

ity, but with only very limited validity during quiet years. The usefulness of

this prediction technique in interplanetary radiation environment analysis has

been discussed at the beginning of Section III.

Table 9. Accuracy of Combined Flare Prediction Method

Year

1960

1961

1962

1963

1964

S*

0.86Z

0.590

0. 674

0.38

0.38

$

"Near" is defined as within 10 heliographic degrees.

- 4Z -
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PROTON EVENT-NEUTRON MONITOR RATE

From one to fourteen days before some polar cap absorption {PCA)

events, decreases of one to three percent have been observed in the neutron

flux near sea level {References 48, 49). These so-called pre-decreases

(prg-baisses) are to be distinguished from the larger Forbush decreases of

typically I0 to 20 percent which accompany rather than precede some solar

energetic proton events. Pre-decreases are probably caused by the

exclusion from the earth of galactic charged particles by a plasma concentra-

tion that is associated with an active solar region and that lies to one side of

,t._..e _=_^^-"'L_. hegrand's- Lo.u_J.,_L-un u- pr e-uecreases zrom I-o February i957 to

18 December 1957, when compared with the proton event list of Table i,

reveals the following association:

Total pre-decreases 12

Pre-decreases followed within

14 days by PCA event

Pre-decreases followed by geomagnetic

storm but not PCA event 2

PCA events not preceded by decrease 2

The probability of a successful prediction of a polar cap absorption

event is accordingly 0.50 ± 0.17, with 75 percent of proton events falling

within the alert period from one to fourteen days after a pre-decrease. The

validity of this method is rather limited, but it provides warnings during

periods inaccessible by optical techniques because of the 14-day period

required for passage of an active region across the solar disk.

- 43 -
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IV. PROTON RADIATION OCCURRENCE PROBABILITY

MODEL EVENT AT 1 AU

In order to obtain a model solar proton event at 1 AU from the sun, it

was necessary to establish correlations in the data that were available. The

available data consisted of onset plus rise times for protons above 30 and

above 100 Mev, characteristic decay times for the same protons, and peak
flux rates and integral fluxes for protons above 10, 30, and 100 Mev. These

data are listed in Table 1. It was these data that were examined for patterns

that would permit the construction of a model event at 1 AU.

A previous study (Reference 50) has been carried out along these lines,

which involved forming the following ratios which are subject to estimated
standard deviations as shown:

_¢> 10 Mev

I _ > 30 Mev
= 5.14±0. Z7 _ E -I" 51 (17)

2; _'4p > 30 Mev

2; I%b> 100 Mev
= 6.55*0.65~ E -1"57 (18)

23 $ > 10 Mev
- 3.4±0.3~ E -I" IZ (19)

2; _ > 30 Mev

_ > 30 Mev
= 4.0±0.4 ~ E-I. 16 (20)

$ > 100 Mev

In the above expressions, f¢ is the total proton flux (p/cm z) above the indi-

cated energy and _ is the peak flux rate (p/cm Z-sec). The summations were

carried out in each case over all events for which the data required in both
the numerators and denominators were available. In other words, in the

first ratio, only those events were included for which both the integral fluxes

above 10 Mev and the integral fluxes above 30 Mev were available. From

these ratios, it was determined that the average integral energy spectrum

weighted by flux per event varied as E -1. 554"0.10 and the weighted peak flux
rate varied as E-1.15±0.09 (see Reference 50).

- 45 •
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At this point, recourse was made to a mathematical expression used to

fit the Bailey Model Event (References 2, 51). That expression was of the form

- a Ent
At e

(E > Eo, t) = E m (Zl)
o

where t = time after the flare (hours) and V = energy (Mev). A, _, m, and n

were taken as constants. It is seen that the time integral of this expression

from t = 0 to t = mis:

A 1 (zz)
(E > Eo) = _2 Em+Zn - E I. 55±0.10

o O

The peak flux rate, obtained when t - 1 , is

-1

_(E > Eo) - Ae t (Z3)

Eom+n Eol. 15±0.09

Thus, the first four ratios (Equations 17 through 20) formed from the data can

be approximately fit, providing m = 0.75±0.15 and n = 0.4±0.1. The param-

eter _ was evaluated by setting the time interval from t = 0 to t = (1/_E n)

equal to the size-weighted onset plus rise time. These onset plus rise times

are shown in Figures 6 and 7 and were averaged, obtaining 12±7 hours (for

protons above 30 Mev) and 7±5 hours (for protons above 100 Mev). Thus,

= 0.022±0.00Z and the rise time does vary approximately as E -0"4.

The characteristic decay time as given by Equation 21 is not a constant,

since the linear factor of t tends to offset the exponential. If, however, the

time required for the peak flux rate to decrease a factor of e is used, the

characteristic decay time obtained is -2. 15 times the onset plus rise time.

This yields characteristic decay times of_25±12 hours (for protons above

30 Mev) and -15±2 hours (for protons above 100 Mev). As Figures 8 and 9

show, these are in reasonable agreement with the size-weighted data. It will

be noted that t and T are plotted to the nearest hour.

The following expressions may be derived from Equation 21.

0.4 t-0. 022E
O

(E > Eo, t) = At e (p/cmZ-hr) (24)
0.75

E
O
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t ONSET PLUS RISE TIME (HRS)

Onset Plus Rise Times Weighted for Flux Above 30 Mev
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t ONSET PLUS RISE TIME (HRS)

Onset Plus Rise Times Weighted for Flux Above I00 Mev
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NORTH AMERICAN AVIATION, INC, =_;;]PA(-_I_. Arid II%II?FIRMA']PTD_I _¥_'rI_MQ lrtlllT_trt_t
............................... _=v..

¢ (E, t)=

-0. 022E °" 4t
At e

E 1.75

(0.75 + 0. 0088 t E 0"4) (p/cm2_hr_Mev) (25)

_) (E) - 3200 A (p/cm2_Mev) (26)

E2.55

2100A
I%5 (E > Eo) - 1.5-5 (P/cruZ) (Z7)

E
O

1_i5$ (E > Eo) - (p/cmZ-hr) (28)
E

O

45

trise (E> Eo) - 0.4 (hr) (29)
E

o

I00

Tdecay (E > Eo) E 0.4 (hr) (30)

O

where A is a normalization constant determined from/_ by Equation 27.

These expressions were derived as part of a series of radiation shield-

ing studies carried out previously (Reference 50). Their use in the present

study was hampered by their applicability to only the largest events. In

order to obtain a model applicable to events of any size, modifications were

required. In order to determine the sort of modifications required, the data
were examined for characteristics that could be correlated with event size.

Two trends were noted. The slopes of the integral energy spectra (Figure 10)

and the peak flux spectra (Figure ll) tend to become less steep, and the ratio

of integral flux to peak flux rate increases (Figures 12, 13, and 14) as the

event size increases. Specifically, the integral energy spectrum appears to

vary from E-I. 6 for large events J0(
( _>30 Mev above 109 p/cm 2) to _E -2 6

for small events (f_ >30 Mev below 1 8 p/era2). The relationship of integral

flux to peak flux rate appears to be approximately (for all energies)

f_~2.5x 104 _ 1.177 (31)
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In order to incorporate these trends into Equation 21, it was necessary to

make a and m functions of event size (determined by the normalization

factor A). The desired behavior can be approximated by the following

relationships :

-0.224±0.01
(3Z)

(from Equation 31) and

m= 16A
-0.16±0.02

(33)

-1.6
which accounts for the E

o

Equations 24 to 30 yields

-2.6

_v .t-, O t,l%._J.a._¢, v _v _ ,

¢ (E,t) =

¢ (E > E o, t) =

Eo0"4 t_- -0_-z__]

At e -0.I-6 (p/cmZ_hr)
16A

E
O

0 224 A-0.224E0.4 -0.16)At e 0.4 t + 16A

-0.16
E16A +1

1.45

f¢ (E > Eo) = A-0. 16 (p/cm2)
16A + 0.8

E
O

(34)

(p/cm2-hr-Mev)

(35)

(36)

¢ (E) =

I. Z9 1.45
16A + 0.8A

E 16A-0.16 + 1.8

(p/cmZ-Mev) (37)

A

¢ (E > Eo) =

1.224
0.37 A

E 16A-0"16 + 0.4
O

(p/cm2-hr) (38)

decay
(E >E ) = 2.15 t . (E >E ) =

0 rlse 0
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The solid curves in Figures lZ, 13, and 14 were calculated using these

expressions. It is seen that they fit the data fairly well.

As an additional check on Equation 39, the rise (actually onset plus

rise) and characteristic decay times as a function of the integral flux were

compared with the formula. This is essentially the same as comparing the

ratio of integral flux to peak flux rate, but the data exhibit more scatter (see

Fi'gures 15 through 18). Nevertheless, the calculated curves fit the data

about as well as any other set of single-valued curves.

In order to facilitate the use of this model in estimating the missing

event data, a series of graphs was made in which various parameters (peak

flux rate, integral flux, rise and decay times) were plotted as functions of

the normalization factor A. These graphs are shown in Figures 19 through

22 and were quite useful since A is not linearly proportional to any single

event parameter (see Equations 34 through 39).

.I

I
I
I

I
I

By the use of Equations 34 through 39 (Figures 19 through 22), the

missing data in Table 1 were estimated. These estimated numbers are

indicated by asterisks (*) and were not plotted as data points in Figures 6

through 18.

The advantage of using an analytical model (Equations 34 through 39)

rather than a numerical fit to the existing data (Figures 10 through 18) is that

it is possible to generate all the characteristics of a solarr proton event in a
consistent pattern once a single parameter (e.g., t, T, J¢ or 6) is known.

EVENT FREQUENCY DISTRIBUTION
¢ _ f m .r . . ;

As expected, ' -_ - -and size 6f-pi'etx_n_e-cerr_--a_re function_ of

solar actxvity. The correlatzonl o_e_t flux _zth the sunspot
,_J . . _ . .

number _ been discussed m the prevmus section. In order to select events

whose total flux (:El(b) and proton event number (PEN) add up to the totals

expected on the ba§is of sunspot correlations, it is necessary to have an event

frequency distribution to choose from. The most obvious distribution is by

event size. In Figure 23, the number of proton events is shown as a function

of integral flux above 10, 30, and 100 Mev. The 76 events of Table 1 were

grouped into categories of >1010 p/cm 2, 3 - 10 x 109 p/cm 2, 1 - 3 x 109

p/cm 2, 3 - 10 x 108 p/cm 2, etc. It is seen that the distributions are not in

disagreement with the Gaussian distributions indicated by broken curves in

Figure 23; the 1_ widths and means of the Gaussian curves are also shown in

this figure. The lack of events larger than those observed is due presumably

to their absence, while the lack of events smaller than those observed is due

to observational difficulties. It is expected that if the proton event size dis-

tributions were completely known, they would be monotonic in nature,

increasing as the event size decreased. However, these missed small events

will not affect the annual proton fluxes appreciably.
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The most probable size of an observed event is:

f_> 10 Mev = _ 1.5 x 108 p/cm 2

f _> 30 Mev = -_ 2 x 107 p/cm 2

f _> 100 Mev = _ 1.7 x 106 p/crn 2

These numbers have estimated Icr limits of a factor of ±Z.

A second type of event frequency distribution concerns the number of

events per month. The 72 events listed in Table 1 represent a time interval

of Z2 years (_Z64months) (1942 through 1963), but to conclude that there

has been an average of 72/264 events per month would be erroneous because

many of the early events undoubtedly have been missed. From 1956 on, the

probability of missing an event >104 p/crn2-sec >30 Mev has been fairly

small, and 68 such events have been observed. Proceeding in this manner,

the monthly probabilities of events as a function of event size over the

96 months from 1956 through 1963 can be obtained. The results are listed

in Table i0. The differential percentages are listed at the left side of each

column, the integral percentages are listed at the right. The maximum

possible number in any column is 71 percent (68 events/96 months), and it

is seen that the 50-percent probability/month event is rather small

(_5 x 106 p/cm 2 > 30 Mev). The integral monthly probabilities (for events

with [_ above given values) are plotted in Figure 24.
J

It must be remembered that the monthly probabilities are averaged

over the years 1956 through 1963. If the entire solar cycle 19 were

included (,-_130 months), the monthly probabilities would probably have been

decreased by _25 percent, since the missing portions are near the solar

minima. For the peak years of 1958-1960, the monthly probabilities would

be increased. However, the limited data available do not permit this sort

of analysis with much confidence.

The proton events are not distributed uniformly throughout the months,

but they tend to occur in certain months. The monthly distributions for all

76 events listed in Table 1 are given in Table ll. The events missed prior

to 1956 will not tend to bias the entire sample, as they would have the

monthly probabilities computed above. The same data, expressed in per-

centages of the totals, are shown in Figure 25. It is seen that July has been

by far the most active month, with 18.5 percent Of the events, 24.5 percent

of the proton event number (PEN), and 33 percent of the integral flux (feb)

above 30 Mev. December has apparently been the least active month, with

0 percent in all categories. However, this distribution must be viewed with

- 68 -
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I
Table I0. Monthly Probabilities of Event Size for 1956-1693

I

I
I

I
I

I

I

I

I

I

I

I
I

I

I

I

Event Size (p/cm 2)

0

> Ixl0

3 - i0 x 109

>3x 109

1 - 3xl09

>Ix 109

3 - I0 x 108

>3x 108

1 - 3x108

>Ix 108

3 - I0 x 107

> 3 x 107

1 - 3x107

> 1 x 107

3 - i0 x 106

> 3 x 106

1 - 3 x 106

> 1 x 106

3 - i0 x 105

>3x 105

1 - 3x105

>Ix 105

f ¢ > 10 Mev

(Events/Month)

7.3

10.4

9.4

6.3

16.7

11.5

6.3

3.1

0

7.3

17.7

27.1

33.4

50.1

61.6

67.9

67.9

71.0

71.0

f (h> 30 Mev

(Events/Month)

4.2

7.3

6.3

12.5

4.2

21.8

5.2

6.3

1.0

4.2

10.5

16.8

29.3

33.5

55.3

60.5

66.8

69.8

f @ > 100 Mev

(Events/Month)

0

1.0

5.2

4.2

5.2

11.5

9.4

18.7

5.2

0

0

0

1.0

6.2

10.4

15.6

27.1

36.5

55.2

60.4
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Table 11. Distribution of Events by Month, 1942-1963

Month

January

February

March

April

May

June

July

August

September

October

November

December

Totals

Number of

Observed

Events

4

5

5

7

6

3

14

10

13

2

7

0

76

Proton Event

Numb er

8

8

I0

2

7

5

28

13

13

2

18

0

114

lOMev

5.5x lO9

2.8x 109

7.5x 109

5.6x 108

6.2x lO 9

2.0x 109

2.0 x i0 I0

3.7x 109

3.7x 109

2 x 10 8

1. 1 x 1010

some suspicion.

0

6.5 x i0 I0

/(_>E (p/cm 2)

30Mev

3.6 x 108

1.2 x 109

I.I x lO9

7.3x 107

l. Ox 109

2.4x lO8

4.0x 109

4.5x lO 8

5.5x lO 8

5x lO7

2.6x 109

0

lOOMev

I.6 x 107

3.7x 108

l. Ox 108

6.7 x 106

9.4 x 107

2.2 x 107

4.1 x 108

2.3 x lO 7

6.5 xlO 7

1 x lO 7

4.4 x 108

1.2 x 1010 1.5x 109

While the earth is 7 degrees above the solar equator in

July, and most of the events in solar cycle 19 took place at northern solar

latitudes, these two facts may very well be unrelated. An alternate {and

probably equally plausible) explanation is that balloon measurements of

solar proton events require high geomagnetic latitudes, which are far

less attractive in December than in July in the Arctic.

One can conclude that the probability of a proton event varies inversely

with some function {approximately the logarithm) of event size, and that both
the number and size of the probable events increase when the sun is active.

The monthly event probabilities (Figure 24) should be corrected for the

appropriate portions of the solar cycle and perhaps for the actual months

involved (Figure 25) before applying them to mission analysis studies.
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DEPENDENCE ON SOLAR DISTANCE

It is sufficient for purposes of establishing radiation protection require-

ments to determine the dependence on solar distance of the total flux of

flare-associated protons in each solar proton event, as a function of proton

energy. The motion of a spacecraft during a proton radiation event has

negligible effect on the radiation environment. It is obvious from the

requirement of conservation of particles that the total flux at any energy

should vary as the inverse square of the solar distance, unless the protons

are confined to some channel or tube by interplanetary magnetic fields. A

proof is presented later that this inverse-square dependence holds if the

int_.vr_]_n_t_'v magnetic ...._ie!d_ _at due to the solar _,_'-'_ir,"the _teaully---_-"

expanding corona.

The adequate design of spacecraft instrumentation to measure the

particulate radiation environment requires knowledge of the expected effect

of solar distance on the temporal and angular dependence of the flare-

associated proton flux as a function of proton energy. Consideration of

angular dependence is beyond the scope of this-program, although the evalu-

ation of temporal dependence included analysis of the angular distribution of

the proton flux versus energy and solar distance.

Theoretical Basis of Model

In order to express the dependence of the proton flux on energy, time,

and solar distance, a model must be used which quantitatively describes the

processes by which a solar flare transfers energy to protons in the solar

atmosphere and by which the protons are transported through the inter-

planetary medium. The model selected in this work is based on:

, Acceleration of protons by Lorentz forces in a hydromagnetic

shock wave induced in the solar corona by absorption of electro-

magnetic radiation emitted by a flare

. In the absence of local irregularities in the interplanetary

medium, circular motion of energetic protons about guiding

centers that move parallel to the interplanetary magnetic

field vector

3. Random walk of energetic protons which enter local plasma

concentrations containing disordered magnetic fields.

The results of these assumptions agree in many respects with the

temporal and angular distribution of flare-associated proton energy spectra

observed in the vicinity of the earth, as will be demonstrated.

-73 -
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Reasonable confidence, therefore, may be placed in the solar distance

relationships based on this model.

Proton Acceleration by Hydromagnetic Shocks

It has been shown by Parker (Reference 52) that the sudden expansion

of the solar corona, as a result of the absorption of electromagnetic radia-

tion emitted by a flare, creates a hydromagnetic shock wave in the corona.

This shock carries with it a disturbance of the interplanetary magnetic

field, which does work on the solar wind protons overtaken by the shock.

The accelerated protons are scattered forward of the shock by an approxi-

mately thermal process and are transported through the generally steady

interplanetary magnetic field. The emergent protons remove energy from

the shock wave, which gradually weakens and disappears. Superposition of

the proton energy distributions emerging from shocks in all regions of the

corona heated by the flare permits calculation of the time-dependent angular

distribution versus energy of the protons arriving at a point at a given

distance from the sun (Reference 54).

The magnetic field in the steadily expanding solar corona ahead of the

shock is swept back azimuthally from the radial direction due to solar rota-

tion relative to the coronal plasma. The components of the field in the

solar equatorial plane are given by Parker (Reference 55) as

Br(r, 0, 4) = Br(r 1 0, _- ri2/u x) 2' o (rl/r) (40)

Be(r, 0, 4p)= 0 (41)

B_(r, 0, 4p)= Br(r 1, 8, 4 - ri2/u x)/-rl_._/-rl-% sin@ (4Z)o
where r, 0, and _ are the radial, polar, and azimuthal heliocentric coordi-

nates; _is the sidereal angular velocity of the sun; and uo x is the solar wind

transport velocity; i.e. , the velocity of steady coronal expansion. When the

leading edge of the shock wave is at r = R 1 and its trailing edge is at r = RZ,

the magnetic field just inside the shock at r >R 2 is

B = B (43)

x 2 x I

- 74 -
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B =B r _

Yz Yl \R1 /

1-g

(44)

B = B = 0 (45)
z z z I

In Equation 44, f and g are functions of the dimensionless shock parameter k

(Reference 52). A convenient form of the field inside the shock, reasonably

accurate except when r is very ..........._1_g_+lylarger +_a..-R Z, is _L_,__plane wave

x- vt) (Biz _ B, ),Bi(x, y, z, t) = Bil + xz 11
(46)

0<t<t 2

x z = vt2 (47)

where i = 1,2,3 denotes the x-, y-, z-components, respectively, v is the

velocity of the leading edge of the shock which passes the observer at t = 0,

and the trailing edge passes him at t = t 2 (Reference 53).

If the magnetic field given by Equation 46, and a weak radial electro-

static field corresponding to a potential of 104 volt (the upper limit of solar

wind proton energies is near 104 ev) between the sun and a point at 1 AU, are

used in solution of the relativistic ponderomotive equations (References 53 and

54) of protons encountering the shock, the protons are found to reach energies

from 1 Mev to about 400 Mev. Acceleration of a given proton terminates when

it is scattered into the region in front of the shock. Coulomb and Rutherford

scattering in the hot (5 x 105 to 2 x 106 degrees K) and nearly collisionless

plasma are essentially random processes (Reference 54), so that the protons

emerging from the shock have an isotropic angular distribution about the

normal to the shock. The flux per unit time duration of the solar flare and

the mean energy of the emerging protons are plotted in Figure 26 as functions

of the heliocentric distance of the point of emergence. These results are for

k = 4/3 and are very similar to results for other values of k in the allowed

range 1 < k < 3/Z.

Proton Transport in Regular Interplanetary Medium

A proton can reach a receiver point if the guiding center of its

trajectory passes the receiver at a distance equal to the gyroradius meas-

ured at the receiver. The proton must emerge from the shock at a distance

from the guiding center equal to the gyroradius at the point of emergence.
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Figure 26. Proton Source Distribution Due to Hydromagnetic Shock
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i : A typical trajectory is illustrated in Figure 27. It is a helical curve wrapped

on a horn-shaped solid with a curving axis and an expanding cross-sectional

i radiu_ the unshocked corona, a magnetic line of force makes an angle with

i a heliocentric radial line given by (Reference 55)

= tan-1 (Bq_/B r) (48)!
-I _2r cos O

i _ = tan (-----_x '_\ Uo / (49)

From Equations 40, 41, 42, 48, and 49, the field intensity at a point on the

i solar equatorial plane (9 = 0) is

I r 4 _nl/2
B(r) = B(rl) [(rl/r ) + (rll3/ruoX)_J (50)

I

!

I 1

I

Figure 27. Proton Trajectory in Undisturbed Interplanetary Magnetic Field
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The distance of an allowed emergence point from the line of force along

which the guiding center of the proton moves is

l 2tl/2

m u
o s

I_S - 2 Us sin _ (51)
qBs _ c

where B s is the undisturbed field at the emergence point (r = rs), u s is the

velocity of the scattered proton, _ is the pitch angle of the trajectory, m o is

the proton rest mass, c is the velocity of light, and q is the proton charge.

The field varies so slowly along the trajectory (_6 x 10 -3 gauss sec -I) that

and u s are very nearly adiabatic invariants of the motion. The proton

arrives at the receiver from a direction at an angle _ to the local field

direction; the flux is axially symmetric about the field direction except for

a brief initial period comparable to one gyration period. The distance (FD)

of the proton from its guiding center when it reaches the receiver is given by

an equation similar to 51 with B s replaced by B R, the field at the receiver,

which is found from Equations 40, 41, and 42 _vith r = rR. The proton flux

emerging from the shock at rs with a given pitch angle _<90 degrees is,

therefore, attenuated by a factor (rs/rl_) 2 at the receiver (r = rl_ ).

The time of flight of a proton from its point of emergence from the

shock to the receiver is the integral of the gyration period along the

trajectory,

2= f(rR' CR )-- F(r) see _ dJ

Us J(r s, _'s )

tR / (rR' qbR) d! (52)

J(r s,a s)

where dl is an element of the path (i.e. , the line of force) followed by the

guiding center. The line integrals in Equation 52 can be transformed to

integrals over the radial coordinate r by

dl = sec _ dr = dr (53)
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The structure of the field is such that the gyroradius at any solar distance

r(r) = rs(rs/r)Z

r>r s is ilz

(54)

so for rR > r s

tR - ;.>-1,2o Us (r Z
3qB s s

tan _)

Z Z)I/Z x
(r R - rs - eUo _n

z. z xZ.i/z]r s[1 + (1 + r R /e u ° )

rR[l + (I + r 2/_2Zu x2)i/2]
S O

(55)

The time of flight can be measured with reasonable accuracy from the

beginning of the flash phase of the flare, when coronal heating is maximum.

The results must be corrected for the time required for light emitted by the

flare to reach the receiver. The time of flight t R is much longer than the

time required for light from the flare to reach the region in which accelerg-
tion occur s.

Results of this analysis are presented later in this section.

Proton Interaction with Irregularities in Medium

Magnetometers carried on interplanetary spacecraft such as Mariner 2

(Reference 56) reveal a highly disordered structure of the magnetic fieId in

regions where the concentration of protons at energies from 10 2 to 10 4ev

is significantly greater than their concentration in the steady solar wind.

These regions, referred to below as "plasma clouds," apparently result

from solar activity and may be injected into space in association with the

flare which produces a given energetic proton radiation event, or in associ-

ation with a previous flare or eruptive prominence. The region moves

outward from the sun at a velocity comparable to that of a hydromagnetic
shock wave inthe ou, ter corona, i.e., about 1.0 x 10 6 to 1.5 x 10 6 m sec "1,

reaching 1 AU in 1.0x 10 5 to 1.5 x 10 5 sec. If a given energetic solar

proton radiation event has been preceded within one to three or four days by

another such event which produced a plasma cloud, this cloud affects the
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energetic proton radiation environment associated with the later event. A

proton event not preceded by formation of a plasma cloud is affected by the

cloud (if any) accompanying this event. The magnetic field in the plasma

cloud has the effect of greatly prolonging the time required for a proton to

traverse the cloud. Protons magnetically trapped in the cloud generally

remain in the cloud for several hours and are transported in the cloud away
from the sun.

I
I
I

Magnetic field measurements inside plasma clouds support the assump-

tion that each component of the field (induction) vector B has a Gaussian

distribution about zero. The rms average scalar field intensity B, therefore,

has a X-distribution (Reference 57) with rms average value

where _B is the standard deviation of a component of B from the mean value

of zero. The magnetic energy density E B = 1_]2/8_ has the corresponding

XZ-distribution. A reasonable value of _ is 10 Be, where B e is the scalar

field intensity outside the plasma cloud; the components of B e are given by

Equations 40, 41, and 4Z. Plasma cloud diameters apparently range from

about 0.1 R o (Reference 58) to about R o (References 59 and 60), where R o

is the heliocentric distance of the geometric centroid of the cloud.

In order to evaluate the energetic proton concentration inside a plasma

cloud, the probability of reflection of an externally incident proton at the

plasma boundary was calculated. The proton will be reflected if its pitch

angle _ about the external magnetic field (Be) satisfies

Z
sin _> B /B. (57)

e 1

where B i is the field intensity in the cloud at the..point of incidence, selected

from the X-distribution with rrns average value B. It can be shown

(Reference 61) that the probability that (Bi/Be) will correspond to the condi-

tion of Equation 57 is

I

I
I
i

l
I

I
I
I

I

P (B. > B sin2_) = I -
1 e Be/'B 'n_= (-3Be2/_Z3 sin4 _)n--- (58) I

2 _--_--_in2_ (n +-_) • n I. I
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The probability of absorption of the proton by the plasma,

2
P = i - P(B. > B sin _) (59)

a 1 e

is plotted in Figure 28 as a function of _ for various values of ('B/Be) in a

spherical plasma cloud surrounded by a uniform field B e .

If a proton enters the plasma, it is assumed to perform random walk

on the vector space {_}, r < R, where r" is the displacement of the proton

in one step of the walk from its position at the beginning of the step (the

pl

cloud radius (Reference 62). The step length (6--r) of the random walk is

variable and is selected from a X-distribution in which the rms average

scalar displacement equals the gyroradius of the proton in the magnetic field

at the beginning of the step,

m

6r =

m CU
o

q(cz-u2)i/zI x
(60)

where u is the proton velocity. The field intensity B is selected from a

X-distribution as previously described; values of the angle between_ and B are

isotropically distributed. If r3R, the proton reaches theplasma boundary

and emerges.

The distribution r(t) was calculated for particles with r < R after

n = 250, 500 and 1000 steps, at proton energies of 1, 10, and 100 Mev. The

distribution of the time t R when particles first reach r = R was also calcu-

lated in order to establish the median time t--R at which one-half of the

particles initially in the plasma have escaped. A practical upper bound of

the effect of the plasma was sought by using R = (2/3) Ro, withR o = 1, 1.41,

and 2 AU. Figure 29 presents a typical position distribution r(t); here

E = 100 Mev, R o = 1 AU, B e = 3T (3x 10 -5 gauss), B = 30T, n = 500 steps,

and 50 protons are assumed initially present. T_he sample size corresponds to

a probable error of 14 percent in the concentration, which is smaller than the

uncertainties in B e and B. The distribution of escape times t R in this case is

shown in Figure 30:

Re sults

The time-dependent energy distributions of protons reaching points at

1, 1.41, and 2 AU following isotropic emergence from a hydromagnetic shock

were calculated from the source function given graphically in Figure 26,

using Equations 51 and 55. These results, presented as the solid curves in

Figures 31, 32, and 33, are based onahydromagnetic shock parameter

-8! -
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k = 4/3 and a flare with duration l0 B sec at the point at which the interplanetary

magnetic line of force through the receiver intersects the solar chromos-

phere (see Figure 34). The "delay time" is the time interval following arrival

of the first light from the flare at a solar distance equal to that of the receiver.

I
I

I
The value of k has little effect on the proton environment (Reference 32}.

If the flare longitude differs by more than a few degrees from the assumed

position, light from the flare cannot induce a shock in the part of the lower

corona from which accelerated protons can reach the receiver. Figure 26

shows that the consequence is absence of lower-energy protons from the

received spectrum. The minimum proton energy at the receiver is plotted

versus solar distance in Figure 35 for various flare longitudes (at the solar

equator) as observed from the receiver. The envir.onment at energies above

the cut-off is negligibly affected by the flare longitude and latitude.

The results shown in Figure 31 were integrated over time to obtain the

total proton flux versus energy distribution at 1 AU, shown as the solid curve

in Figure 36. The corresponding results at other solar distances may be

found by dividing the result of Figure 36 by the square of the solar distance,

as shown previously.

In order to include the effects of plasma clouds on the proton radiation

environment, two alternative situations were considered:

. The proton radiation event is the first to occur in at least four

days. Approximately simultaneously with the flare that produces

this event, a plasma cloud moves radially from the sun toward

the receiver with velocity v c = 1160 km/sec, the velocity of a

hydromagnetic shock front with k = 4/3 (Reference 52}. The front

of the cloud, with radius R = (2/3) R o, reaches 1 AU in

8.5x 104 sec, and the trailing surface passes 1 AU 1.7 x 105 sec

after the flare. Protons associated with the flare are reflected or

captured by the Plasma near the sun; the number of protons

inside the cloud decreases exponentially with median escape time

t R, measured from the time of the flare.

. The proton radiation event has been preceded by one that has

produced a plasma cloud which, at the time of the flare causing

the later event, has just reached the receiver. The protons that

enter the cloud now do so at solar distances from Ro/3 to R o. The

median emergence time t R is still measured from the time of the

later flare, but now few protons emerge from the plasma before it

reaches the receiver.

I
I
I
I

I
I

I
I

I
I

I
I
I

Results based on situations 1 and 2 are shown by dashed and dotted

curves in Figure 31, 32, 33, and 36. The effect of the plasma on the total

(time-integrated} radiation environment at 1 AU is not great, and is even
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less at greater solar distances. The plasma does, however, considerably

prolong a proton radiation event, especially at energies below 100 Mev.

Discussion of Results

The proton event model developed here exhibits several of the

characteristics of observed events tabulated in Section II, including

lo The slope of the differential energy spectrum with its "knee"

between 20 and 40 Mev

2. The increasing softness of the spectrum with time

. The appearance of protons with given energy at increasing arrival

angles (Reference 03)

. The ability of flares on the western half of the visible solar

hemisphere, or just east of the central meridian, or just beyond

the western limb, to lead to observable proton events.

The size or total proton flux of the model event can be adjusted by

altering the assumed duration of the flare.

This model is based upon the propagation of a single shock wave in the

previously unshocked solar corona. After passage of the initial shock wave,

the corona remains at a temperature higher than that of the unshocked corona.

Secondary shocks may, therefore, produce a larger yield of energetic pro-

tons than does the initial shock, since the average proton energy before

arrival of the secondary shocks is greater than in the unshocked corona.

Consideration of multiple shocks may result in a greater proton flux from a

flare of given duration.

This model predicts neither flares nor solar proton radiation occur-

rence probabilities. It is limited to a description of the proton radiation

environment associated with flares bright enough and large enough to induce

hydromagnetic shock waves in the corona.
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V. RADIATION ENVIRONMENT EVALUATION

APPLICATION TO MARS MISSION

To illustrate the techniques discussed in previous sections, a specific

mission is considered. This mission is a 1971, unmanned, one-way trip to

_ -- Some of the parameters for such a mission (chosen to minimize the.wJ.a J.- ,_.

AV required) are listed in Table 12.

The solar proton event environment for this mission is chosen from

the following two relationships derived earlier

lOgl0 I/_5y>30 Mev ] (197)_= 8._3 + 0.0023 Ry (1970)

PEN (1971) = 0.1 Ry (1970)

(61)

(62)

where ;_y >30 Mev is the integral particle flux (protons/cmZ-year) above

30 Me_, Ry is the annual smoothed Wolf sunspot number, and PEN is the

Table 12. Trajectory Parameters for a 1971 Mission to Mars

I

!
I

I
I

I

Date

Calendar

24 May 1971

23 June 1971

23 July 1971

22 August 1971

21 September 1971

21 October 1971

20 November 1971

20 December 1971

Julian

244, 1095. 5

1125.5

1155. 5

1185. 5

1215. 5

1245. 5

1275. 5

1305. 5

Time After

Launch

(days)

0

3O

6O

90

120

150

180

210

Solar

Distance

(AU}

1.00

1.05

i. ii

i_,18

1.27

1.35

1.4O

1.45
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242

273

301

326

346
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/j,. (.

--J ,,,

proton event number. Equation 61 represents the major axis of the 30-Mev,

95-percent confidence ellipse (see Equation 7 and Figure 4) and, thus,

corresponds to the most probable (mean) value of lOgl0 (f_y >30 Mev). _
Equation 62 is the same as Equation 9; the PEN concept was illustrated in

Figure 5 and Table 5.

Since Ry has been predicted as 135±54 for 1970 (Figure 2), the use of

Equations 61 and 62 leads to the following values for 1971 at 1 AU:_ _

by >30 Mev = 4. 1 x 108 p/cm 2 above 30 Mev

PEN = 14

Based upon the observed event size distribution (Figure 23),

combination of events (at 1 AU) appears probable:

1 event 2 x 108 p/cm 2 >30 Mev PEN = 3

2 events 5 x 107 p/cm 2 >30 Mev PEN = 2 x 2 = 4

4 events 2 x 107 p/cm 2 >30 Mev PEN = 4 x 1 = 4

3 events 1 x 107 cm 2p/ >30 Mev PEN = B x 1 = 3

It will be noted that this combination totals to 4. 1 x 109 p/cm 2

Mev and a PEN of 14, as desired.

the following

>30

To correct for the spacecraft-sun distance, it is necessary to select

probable months in which these events occur. As shown in Figure 25, July

has been the most active month, with November the second most active,

etc. Based upon the probability distributions of Figure 25, the following

somewhat arbitrary month assignments are made for the 10 events expected

in 1971:

1 event 1 x 10 7 p/cm 2 January

1 event 5x 10 7 p/cm 2 February

1 event 1 x 107 p/cm 2 March

1 event 2 x 10 7 p/cm 2 May

1 event 2 x 10 7 p/cm 2 July

1 event 2 x 10 8 p/cm 2 July

1 event 1 x 10 7 p/cm 2 August

•J _...... f

, : "f ,- i ,

at 1 AU
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1 event 2 x 107 p/cm 2 September 1
I 1 event 5 x 107 p/cm 2 November

II 1 event 2 x 107 p/cm 2 November
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at 1 AU

I
I

I

l
I
I
I
I

I

I

I
i

I
I

I

For the hypothetical mission to Mars (Table 12) the first four events

take place prior to launch and are, therefore, ignored. The expected proton

fluxes for the remaining events are decreased by a factor of r2 over those

e_ ..... a,. 1 AU, ....... RZS _,.= sun-s F=u=u,=,_ u,-_ar, ce in AU.

July 1971 1 event f4 = 1.6 x 107

July 1971 1 event /4 = 1.6 x 108

August 1971 1 event /4 = 7.2 x 106

September 1971 1 event /4 = 1.2 x 107

November 1971 1 event /4 = 2.5 x 107

November 1971 1 event /4 = 1.0 x 107

at spacecraft

(p/cm 2 >30 Mev)

The total expected proton flux due to solar events expected during the
hypothetical mission is 2.3 x 108 p/cm 2 >30 Mev, as contrasted to 3.2 x 108

p/cm 2 >30 Mev if the entire corresponding mission had been carried out at
1AU.

It should be pointed out that the peak flux rates are reduced by more

than the factor of r_ by which the integral fluxes are reduced (Figures 31

through 33}. This reduction is due to an increase in the rise and decay times

as r R (the sun-spacecraft distance} increases, due to the greater path

lengths from the sun and the increased dimensions of the plasma cloud. To

a first approximation, the peak flux rates vary as rI_ 2" 5, and so the peak

flux rates expected at the spacecraft are:

July 1971 1 event _ = 200/1.28 -_ 160

July 1971 1 event _ = 1600/1.28 ---1250

August 1971 1 event _ = 100/1.51 _ 70

September 1971 1 event_ = 200/1.82 _ 110

November 1971 1 event _ = 450/2.30 m 200

November 1971 1 event _ = 200/2.30 _ 90

at spacecraft

(p/cm2 sec >30 Mev)
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These predicted peak fluxes, when multiplied by the effective areas of

the proton detectors (cm 2 - sterad), provide a basis for designing electronic

circuitry to handle the expected proton detector outputs.

It will be recognized that this sort of analysis is based upon several

assumptions. Among these are:

l. The proton event environment near the ecliptic plane is expected

to be independent of solar longitude and latitude.

2. The monthly distribution of solar proton events is assumed to be

real.

.

?
The integral fluxes are assumed to vary as 1/r_, whererRis the

distance from the sun.

Of these assumptions, the last is probably reasonably valid, but one of

the first two is probably not. If the event environment is independent of solar

latitude and longitude, there is no reason to believe that the monthly distri-
bution is real. If, however, there is a non-uniform monthly distribution of

solar proton events {at 1 AU) the solar longitude and latitude almost certainly

are important. The data are not adequate to decide which, if either, of the

first two assumptions is valid.

I

I

I

I

I

I

I

I
I

I
It is possible to select the numbers and sizes of solar proton events for

the years 1969 through 1975 based upon the yearly smoothed Wolf sunspot

number. These predictions are listed in Table 13. As before,r the expected

events are those that add up to the expected integral flux (]_) above 30 Mev

and the proton event number (PEN}. (The events listed in-Table 13 are not a

unique set of events and, considering th_ statistical distributions about the

most probable values of Ry, PEN, andJ_b, at least several hundred combina-
tions are possible. )

I

I

I
The extension of this technique to a computer is straightforward. The

computer would select the events from the event size distribution and the

year(s) of the mission. Once the sizes of the events expected each year had

been generated by a random table look-up technique, the month in which each

event is expected to take place would be assigned on the basis of the monthly
event distributions. This environment would then be used to calculate the

mission flux expected for any preassigned spacecraft mission. By repeating

this procedure several hundred times, mission flux probabilities would be

generated for any desired mission. By applying this procedure to several
different missions, it would be possible to calculate mission flux probabilities

as a function of mission parameters.
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Table 13.

Year

1969

4970

1971

1972

1973

1974

1975

Solar Proton Events Expected at 1 AU for 1969-1975

Ry for
Previous

Year

128

132

135

126

.. t,

108

9Z

77

PEN

13

13

14

13

11

f_>30 Mev

(p/cm 2)

3.9x 108

4.0x I08,

4.1 x 108

3.9 x 108

3.5 x 108

3.2 x 108

3.0 x 108

Events Expected

p/cm 2 >30 Mev

I event - Z x 108

2 events ~ 5 x 107

3 events -2 x 107

3 events- ! x !07

1 event - 2 x 108

2 events ~ 5 x 107

4 events - 2 x 107

2 events -1 x 107

1 event - 2 x 108

2 events - 5 x 107

4 events -2 x 107

3 events -1 x 107

1 event -2 x 108

2 events - 5 x 107

3 events -2 x 107

3 events ~ 1 x 107

1 event ~ 2 x 108

1 event - 5 x 107

4 events -2 x 107

2 events -1 x 107

1 event -2 x 108

1 event -5 x 107

3 events ~ 2 x 107

1 event -1 x 107

1 event - 2 x 108

1 event ~ 5 x 107

2 event -2 x 107

1 event ~ 1 x 107
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VI. CONCLUSIONS

The novel results of the work reported are the establishment of a solar

proton radiation environmental model which includes (1) dependences on the

cyclic level of solar activity and on solar distance, (2) the analytic repre-

sentation of the proton flux versus energy distribution so as to include the

dependence of this distribution on the total flux, and (3) the quantitative

expression of the standard deviations and, hence, the probability distribu-

tions of the calculated quantities. In addition, a critical review of original

research reports led to a_ definitive tabulation of proton radiation event and

solar flare parameters. The correlation of proton radiation event and solar

flare occurrence probabilities with predictable solar phenomena was estab-

lished for the 1959 to 1975 period. Methods that permit calculation of not

only the most probable proton radiation environment in interplanetary space

flight, but also the probability of occurrence of other environmental levels
have been established.

The results leave something to be desired, however. The analytical

representation of the temporal dependence of the proton flux versus energy

is based on data which include early and primitive measurements and which

may exclude significant radiation events in years before about 1956. The

association of the proton radiation environment with predictable solar

phenomena is well defined but suffers from randomness of the association

and of the supposedly predictable phenomena. For example, future sunspot

numbers can be predicted only with some uncertainty, and the proton flux-

sunspot number correlation, while significant, is not excellent.

RECOMMENDATIONS

The results are incomplete in that they portray only a portion,

although perhaps the most important portion, of the complete particulate
radiation environment associated with solar flares. Additional work is

recommended to provide a fuller description of this environment. The

recommended work primarily concerns inclusion of particle types other than

protons, evaluation of directional distributions of the radiation flux, exten-

sion of the solar distance range, and improvement of the method of

evaluating environmental levels on interplanetary missions.

The charged particulate radiation emitted in association with solar

flares may contain, in addition to protons, electrons, alpha particles, and

heavy nuclei (References 64, 65, and 66). It has been shown (References 64
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and 67) that alpha particle radiation may produce greater material and

biological damage than protons produce. Electrons may also be a significant

part of the radiation environment of exposed or thinly protected spacecraft

components. Radiation instrumentation intended to accomplish comprehen-

sive studies of space radiation and solar activity should be designed in light

of the most probable levels of all types of particles composing the radiation

environment; therefore, the electron and alpha particle fluxes versus

energy, time after a flare, solar activity level, and solar distance should

be evaluated. If feasible, similar results should be obtained for the flux of

heavy nuclei (lithium to iron). Results of experimental measurements of

electrons and alpha particles in space should be supplemented by analyses

based on particle acceleration by hydromagnetic shocks, synchrotron

radiation energy loss of electrons in the solar magnetic field, and diffusion

of energetic particles in local clouds of disordered plasma in the inter-

planetary medium.

The analyses of hydromagnetic shock acceleration and proton transport

presented in Section IV can be used to provide values of the distribution of

solar proton arrival angles versus time, proton energy, and solar direction

(Reference 54). These results agree well with observed angular distributions

in the vicinity of the earth (Reference 68) and also with earlier models of the

anisotropy of solar proton radiation (Reference 69). The directional distribu-

tion of the radiation is significant in spacecraft shielding analysis and in the

design of particle spectrometer arrays which measure the angular distribution

of the charged particle flux. Therefore, the solar radiation directional dis-

tribution should be evaluated for protons, alpha particles, and electrons as a

function of time after a flare, stage of the sunspot number cycle, particle

energy, and solar distance. This work will reveal the dependence of the

degree of anisotropy on solar distance.

I

I

I

I

l

I

!

I

I

l

I

I
The solar distance interval from 1 to 2 AU contains most unmanned

vehicle trajectories to Mars. Manned missions to Mars reach aphelion

distances beyond 2 AU before returning to earth; any flights to the major

asteroids or Jupiter extend to as much as 5 AU. Approaching the sun,

Venus missions which have immediate interest reach perihelion distances

near 0.7 AU, while future solar probes and Mercury missions may reach

solar distances as smallas 0.3 AU. It is, therefore, worthwhile to extend

the proton radiation models developed here, as well as the recommended

studies of electron and alpha particle environments and of anisotropy, to

the solar distance range from 0.3 to 5 AU. The analyses below 1 AU will

be very straightforward because of the diminishing importance of irregu-

larities in the interplanetary medium, while results beyond 2 AU will

admittedly suffer in reliability because of the poorly known extent of solar

magnetic fields and the solar wind into the interstellar medium. The

importance of the galactic particle radiation environment also increases

with increasing solar distance, both absolutely and with respect to the solar

radiation.
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The application of the present and recommended analyses to the

evaluation of the radiation environment on space missions can be improved

by automation. It is recommended that a computer program be prepared

which uses Monte Carlo techniques to select randomly from probability

distribution tables the dates and particle fluxes of the solar particulate

radiation events encountered on a specified trajectory. If the same mission

is "flown" repeatedly, the probability distribution of radiation environment

profiles can be established.

The work presented here provides a valuable technique for estimating

the expected solar proton radiation environment in interplanetary space.

If this work is supplemented by the recommended effort, the planning of

space missions and the design of space vehicles will benefit from a quanti-

tative statistical description of present knowledge of all significant aspects

of the radiation environment associated with solar activity.
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APPENDIX B. FLARE-PLAGE CORRELATION TABLES

Tables B1 through BI4 give values of wij k, the probability of occurrence

of at least one flare (with corrected area I00 millionths of the solar hemi-

sphere or greater) at a calcium plage region with given area, age, and

luminosity. Odd-numbered tables refer to flares on the same disk passage

as that on which theplage is observed; even-numbered tables refer to flares

on the next disk passage of the position of the plage. A pair of tables is pre-

sented for each year from 1958 through 1964; these years correspond to

1969 through 1975, in sunspot number cycle Z0.

When Pijk = 0 in Equation 10, wij k is indeterminate; i. e. , no

plages with the given characteristics were observed. These values of wij k

may be interpolated or extrapolated from adjacent values or adjacent years.
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Table B1. Probability of Flare Occurrence on Same Rotation,

1958 (1969)

I

I

I

Plage Area

<1000

1000-2000

2000-4000

_4000

= indeterminate

Plage Age

1

2

3

4

5

6

7

_8

1

2

3

4

5

6

7

v8

1

2

3

4

5

6

7

v8

I

2

3

4

5

6

7

_8

Plage Luminosity

i-1.5 2-2.5 3-3.5 4-5

0.148

0.136

0.133

0.300

0.125

0.200

.

0.

0.

0.

0.

0.

5OO

556

125

333

333

5OO

1

0. 404

0. 478

0. 556

0.5OO,

0. 667

0. 667

0. 533

0. 563

0. 692

0. 667

0. 625

0. 833

0.800

0. 875

0. 800

0.75O

0.8OO

0. 500

1

1

1

1

1

1

0.80O

0. 500

1

0.7O6

0.714

0.667

1

1

0.944

0.909

0.875

1

1

1

1

0.971

1

1

1

1

1

1

1

1

#

1

1

1

I
I

I
I

I

I
I
I

I

I

I
I

I
I

I
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Table B2. Probability of Flare Occurrence on Next Rotation,

1958 (1969)

I

I

I
I

I

I
i

I

I

I

I
I

I
I

I

Plage Area

<1000

1000-2000

2000-4000

4000

Plage Age

1

2

3

4

5

6

7

;8

1

2

3

4

5

6

7

_8

l

2

3

4

5

6

7

_8

I

2

3

4

5

6

7

_8

= indeterminate

i-1.5

0.041

0. i00

0.071

0.154

0.083

0

0

0. 250

0.200

0

0

0

0. 333

0

g¢

#

#

0

0

I

0

0

O. 500

0

Plage Lumino sity

2-2.5 3-3.5 4-5

o

0.

.

0.

o

0.

0.

0.

0.

0.

o

0.

0.

.

0.

0.

128

Iii

0

375
250

0

#

162

043

428

273

357

222

0

412

304

236

0

0

0

0

200

750

444

1

0

1

0. 522

0

#

0

*

O.

O.

O.

Oo

O.

O.

O.

O.

Oo

O.

O.

O.

O.

120

iii

286

667

0

l

1

#

333

236

267

250

500

0

0

g¢

293

5OO

640

4OO

4OO

0

Go

0.

0

g¢

1

l

g¢

1

667

5OO

1

0
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Table B3. Probability of Flare Occurrence on Same Rotation,
1959 (1970)

Plage Area

<1000

1000-2000

2000-4000

4000

Plage Age

1

2

3

4

5

6

7

_8

1

2

3

4

5

6

7

_8

1

2

3

4

5

6

7

1

2

3

4

5

6

7

r_8

Plage Luminosity

I-I. 5 2-2.5 4-5

O. 222

O. 125

O. 250

O. 200

O. 500

1

1

1

O. 500

1

#

#

Oo

O.

O.

O*

O.

O*

0.

0.

0.

0.

0.

*

0.

0.

0.

0.

*

0

a

3-3.5

431 O. 818

545 O. 500

400 *

1 , 1

500 *

750 *

538 0. 833

455 0. 667

444 1

571 *

600 1

333 *

1 *

• 1

571 O. 952

7O6 O. 700

667 O. 700

750 1

750 1

1 0. 750

500 1

• 1

1

1 1

750 0. 923

1 1

500 1

1 1

1 *

g¢

g¢

1

1

* = indeterminate

I

I

I

I

I

I

I

I

I

I

l

I

I

I
I

I

I
I
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Table B4. Probability of Flare Occurrence on Next Rotation,

1959 (1970)

I

l
I
I

I

I
I
I

I
I

I
I

I

I
I

Plage Area

< I000

1000-2000

2000-4000

4000

* = indeterminate

Plage Age l--

1 O.

2 O.

3 O.

4

5 O.
6

7

_8

1

2

3

4

5

6

7

_8

1

2

3

4

5

6

7

_8

1

2

3

4

5

6

7

_8

Plage Luminosity

#.

1

g,

1.5 2-2.5

172 0.159
Ag_

833 0.267

* 0.500,

143 0.250

* O. 250

0.154

* 0.280

* 0.250

l O.400

* 0.091

* 0.666

* 1

* 1

O. 125

0.500

0.400

0.714

0.571

0.333

#

O. 250

O. 750

1

0.500

0.500

0.500

3-3.5 4-5

0.333

1

0.368

0.666

0.500

O. 524

O. 333

O. 429

O. 800

I

O. 250

O. 666

O. 625

O. 750

O. 785

O. 889

O. 750

O. 666

1

#

#

#
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Table B5. Probability of Flare Occurrence on Same Rotation,

1960 (1971)

I

I

I

Plage Area

<1000

1000-2000

2000-4000

w4000

Plage Age

i

1

2

3

4

5

6

7

78

1

2

3

4

5

6

7

78

1

2

3

4

5

6

7

78

1

2

3

4

5

6

7

78

* = indeterminate

Plage Luminosity

1-1.5 2-2.5 5

0.235

*

O. 250

0.143

0.200

*

*

O,

O.

O,

500

333

167

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

0.286

0.235

0.250

0.25a

O. 111

*

*

0.529

0.308

0.333

0.214

0.727

0.500

*

0.333

1

O.846

O.667

0.556

0.800

1

0.667

0.500

1

1

0. 500

3-3.5 4-

O. 750 *
• *

• *

• *

• *

• *

1 *

• *

0. 900 *

0. 333 *

1 *

• *

1 *

• *

• *

• *

O. 733 *

O. 688 *

O. 933 *

0.833 *

1 *

1 *

1 *

• *

1 *

1 *

1 *

O. 750 *

1 *

O. 667 *

1 *

1 *

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I
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Table B6. Probability of Flare Occurrence on Next Rotation,

1961 (1972)

Plage Area

<I000

1000-Z000

2000-4000

_4000

* = indeterminate

Plage Age

2

3

4

5

6

7

_8

1

2

3

4

5

6

7

_8

1

2

3

4

5

6

7

_8

1

2

3

4

5

6

7

_8

Plage Luminosity

i-1.5 2-2.5 4-5

0. i00

0

0

0

0.667

0

0

#

0

0. 500

1

0

$

#

#

$

$

$

$

$

Oo

O.

O.

Oo

O,

0.

0.

0.

.

,

0.

o

o

3-3.5

053 0.411

154 *

222 0.667

250 *

0

0

167 0.200

222 O. 111

357 0.750

167 0.333

0

333 *

0 0

0 *

0 0.400

500 0.143

667 0.500

• 0. Z50

50O 0

0

1

0

1

500 0.75O

• 0. 667

• O. 500

• 0

#

#

#

I
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Table B7. Probability of Flare Occurrence on Same Rotation,
1961 (1972)

Plage Area

<I000

1000-2000

2000-4000

_4000

Plage Age

1

2

3

4

5

6

7

_8

1

2

3

4

5

6

7

_8

1

2

3

4

5

6

7

_8

1

2

3

4

5

6

7

_8

Plage Luminosity

1-1.5 2-2.5

0. iii

0.200

0.333

O. 250

1
*

*

*

*

*

*

*

*

*

o

o

,

,

O.

O.

O.

O.

O.

O,

O.

1
*

*

*

*

*

*

_

* 0.

* 0.

333 '
*

500
*

5O0

833 O.

400 O.

133 O.

333

666

666

1 O.

400 O.

333 O.

* O.

"1<

O.

3.5 4-5

529 *

666 *

720 *

250 *

500 *

1 *

1 *

789 *

833 *

750 *

1 *

500 *

1 *

• *

• *

1 *

1 *

1 *

500 *
• ,

• *

• *

• *

* = indeterminate

I

I
I
I
I
I

I
I

I

I
I

I
I

I
I
l

I
I
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Table B8. Probability of Flare Occurrence on Next Rotation,

1961 (1972}

I
I

I
I

I
I
I
I

I
I

I
I

I
I
I

Plage Area

< 1000

1000-2000

2000-4000

4000

Plage Age

6

7

_8

>

>

$ = indeterminate

1

2

3

4

5

6

7

8

1

2

3

4

5

6

7

8

1

2

3

4

5

6

7

8

I-1.5

.

.

.

100

#

666

5OO

l

#

#

Plage Luminosity

2-2.5

.

0.

0.

.

.

O.

O.

O.

O.

O.

O.

O.

O.

O56

154

182

25O

#

167

182

357

167

$

333

#

500

666
#

500

:#

#

500

#

#

3-3.5

0. 412

0. 666

#

#

0.200

0. III

0.750

0. III

#

0.400

0.143

0.500

0. 250

1

#

1

0.750

0.666

0.500

4-5

#

#

#

#

#

#

#

#

#

#

#
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Table B9. Probability of Flare Occurrence on Same Rotation,

1962 (1973)

Plage Area

< 1000

1000-2000

2000-4000

_4000

Plage Age

2

3

4

5

6

7

;8

>

1

2

3

4

5

6

7

8

1

2

3

4

5

6

7

8

.

.

0.

i-1.5

*

*

*

*

*

*

*

105

1

Plage Luminosity

2-2.5 3-3.5 4-5

.

0.

O.

O.

O.

O.

O.

Oi

O.

O.

O.

25O

iii

*

*

*

*

*

*

*

300

333

167

500

333

*

036

333

,

239

300

111

5O0

*

*

*

*

*

*

*

o. 65o

0. 636

0.600

*

0.444

0.900

1

0.333

0.666

1

*

0. 400

0. 400

1

1

I

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

1

*

*

*

*

*

*

*

"_ = indeterminate

I

I

I
I
l
I
I

I
l

I
I

i
I

I
I

I
l

I
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Table B10. Probability o£ Flare Occurrence on Next Rotation,

1962 (1 973)

I
I

I
I
I

I
I
I
I
I

I

I
I

I
I

Plage Area

< 1000

1000-2000

2000-4000

4000

* = indeterminate

Plage Age

1

2

3

4

5

6

7

_8

1

2

3

4

5

6
7

_8

i

2

3

4

5

6

7

r_8

1

2

3

4

5

6

7

I-1.5

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

Plage Luminosity

2-2.5

*

*

*

*
J

*

*

*

*

*

*

*

*

*

*

*

*

3-3.5

*

*

*

*

*

*

*

0.087
*

*

1
*

*

*

0.111

0. 125

0.250

*

*

*

*

*

*

*

*

*

*

*

*

*

*

O. 500

*

*

*

*

*

*

*

1

*

*

*

*

*

*

*

*

4-5

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

I
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Table Bll. Probability of Flare Occurrence on Same Rotation,

1963 (1974)

I

I
I

Plage Area

< 1000

1000-2000

2000-4000

4000

* = indeterminate

Plage

1

2

3

4

5

6

7

1

2

3

4

5

6

7

_8

1

2

3

4

5

6

7

1

2

3

4

5

6

7

_8

Plage Luminosity

Age

O.

O.

1-1.5 2-2.5

017 O. 039

* O. 143.

, ,

, ,

, ,

, ,

* O. 250

* O. 166

* *

* *

, *

* ,

* ,

* O. 043

* *

* *

* *

* 1
* *

* *

083 O. I00

* 0. 250

* ,

* ,

* ,

* ,

3-3.5 4-

0. 200 *

• *

• ,

• *

• ,

• ,

• *

O. 929 1

O. 400 *

O. 400 *
• •

, •

1 *
• *

• *

O. 857 *

0.714 *

O. 800 *

O. 666 *

• *

• *

-:.- ,

• *

O. 500 *

1 1
• *

1 *

• ,

• ,

• ,

• *

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I
- 164 -

SID 66-421
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Table B12. Probability of Flare Occurrence on Next Rotation,

1963 (1974)

I

I

I
I
I

I
I
I

I
I

I
I

I

I
I

Plage Area

<1000

1000-2000

2000-4000

4000

Plage Age

$ = indeterminate

1

2

3

4

5

6

7

w8

1

2

3

4

5

6

7

_8

1

2

3

4

5

6

7

w8

1

2

3

4

5

6

7

w8

Plage Luminosity

1-1.5 2-2.5 4-5

0.013

#.

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

O,

O.

,

O.

Oo

Oo

3-3.5

055 *

143 *

125 O. 176

• 0.167

200 *

500 0.222

• 0.600

i 0.500

048 O. 111

0.500

#

1

1

#

$

#

#

#
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NORTH AMERICAN AVIATION, INC. SPACE and INFORMATION SYSTEMS DIVISION

Table BI3. Probability of Flare Occurrence on Same Rotation,

1964 (1975)

Plage Area

< I000

1000-2000

2000-4000

4000

>

>

>

Plage Age

1

2

3

4

5

6

7

_8

1

2

3

4

5

6

7

8

1

2

3

4

5

6

7

8

1

2

3

4

5

6

7

8

1-1.5

0. 016

0. iii

*

*

* •

*

*

*

*

Plage Luminosity

2-2.5

0.069 0.

0.333

*

*

*

*

*

0. 500 0.

0.333 0.

0. 666

*

*

*

*

i

*

*

,

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

3-3.5

419

*

*

*

*

*

*

714

5OO

1

1

1

*

*

*

1

1

*

*

*

*

*

*

4-5

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

* = indeterminate

I

I
I

l
I
I
I

I
I

i
I
I
I

I
I

I
I
I
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Table BI4. Probability of Flare Occurrence on Next Rotation,

1964 (1975)

I

I

I

I

I

I

I

I

I

I

I
I

I

I
I

Plage Area

<I000

1000-2000

2000-4000

4000

Plage Age

1

2

3

4

5

6

7

8

1

2

3

4

5

6

7

_8

1

2

3

4

5

6

7

_8

l- 1.5

003

$

$

$

$

$

$

$

$

Plage Luminosity

2-2.5

O. 028
#

O. 333

3-3.5

0.094

0.250

0.333

1

#

0. 500

1

$ = indeterminate

1

2

3

4

5

6

7

_8

Oo

#

#

4-5

.
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APPENDIX C. COMPUTER PROGRAMS

One computer program listed and described below was prepared in

this study. Other programs used in the study were completed, under the sole

support of North American Aviation, Inc. , prior to the inception of this
contract.

DESCRIPTION OF

Name :

PROGRAM

SPOTNO

Purpose: This program calculates the monthly smoothed

Wolf sunspot number R M at each month from a

given date to a date 250 years later.

Method: The program evaluates the sum of the contribu-

tions to R M of each of 1 to 50 terms which are

a discrete representation of a power frequency

spectrum P(f) of the R M from July 1749 to

June 1964. P(f) is defined by Equation 3 in

this report, and the summation process replaces

the integral in Equation 4 by

R M (t")

N

= X;
n=l

P(fn) (fn+l-fn) sin 2 Wfn (t"=to) (C-l)

where t o is a time at which R M (to) = 0.

Language: FORTRAN 4, for the IBM 7094 computer; compiler

- FAP; operating system - IBSYS.

Instructions for Use:

Program Decks:

Input-Output Variables:

Compilation time - 7 seconds; loading time -

17 seconds; execution time - 10 seconds; printing -

3000 lines. Program requires subroutine DECRD,

which is on NAA library tapes.

Source, BCD, 29 cards; object - relocatable column

binary, 16 cards. These decks are transmitted

separately. Program is on file at NAA as Deck
3M906.

FORTRAN variables appearing in input and output

statements of SPOTNO are defined in Table C1, in

the order of their appearance in the program.
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Table C I. Definition of Variables in SPOTNO

I
I

I
FORTRAN

Name

TO

TI

NF

F(I)

p(1)

TC

SN

Algebraic

Symbol

N

fn

P(fn)

t II

RM

Definition

Time at which sunspot number = 0 (year AD)

Earliest date at which sunspot number is to be

found (year AD)

Number of terms in power frequency spectrum,

Equation C 1

Frequency of nth term (year -l )

Amplitude of nth term

Any date at which sunspot number is found

(year AD)

Sunspot number

I
I
I
I

I
I

I
LISTING

The listing of SPOTNO follows (Figure CI).

DATA

Values of data variables used in this study are given in Table C2.

- 170 -

SID 66-4ZI

I

I
I

I
I
I
I

I
I



NORTH AMERICAN AVIATION, INC. SPACE and INFORMATION SYSTEMS DIVISION

I

I
I

I
I
I

I
I

I
I

I
I
I

I
I
I

0000000000000000
OOOOOOOOOOOOOOOO 000000000
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Table C2. SPOTNO Data.

I

I

I
t = 1810.5

O

t" (min)= 1749.5

n=25

n

1

2

3

4

5

6

7

8

9

10

ii

12

13

14

15

16

17

18

19

2O

21

22

23

24

25

fn(yea r -1)

0.0045

0.0112

0.0176

0.0233

0.0281

0. 0345

0. 0406

0. 0475

0. 0522

0. 0567

O. O65O

0.0705

0.0765

O. O828

0.0903

O.0945

0. I011

0.1063

0.1122

0.1178

0. 1236

0. 1290

0. 1340

0. 1410

0. 145 0

P(fn ) (spotsZ/yr 2)

4,600

21,500

12,300

• 6,100
700

2,200

1,200

3,400

6O0

2, i00

2,200

4,800

5,200

5,200

41,700

i0,500

30,200

15, 300

5,6OO

7,800

5,200

I, 300

2, i00

I, 500

0

I
I
I

I
I

I
I

I
I
I

I
I

I
I
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